

Thermoelectric Phenomena and Bulk and Interface Transport

Xin Song Postdoc. Dep. Physics, University of Oslo

Outline:

Bulk transport – two approaches

Laudauer approach – illustrative for phenomena

BTE – describtive for correlations in transport

Transport at interface

Thermoelectric circuit

Thermoelectric circuit

MEMS thermoelectric generator

Yang et al. (2013), Sensors, 13(2), 2359-2367

Bulk transport properties

Landauer approach – Thermoelectric phenomena

Ballistic transport;

Approximate but illustrative.

Boltzmann transport equations – transport coefficients

Diffusive transport;

Statistical behaviour, relatively closer to reality, but **realitively**;

Correlation of transport coefficients.

Thermoelectric phenomena - Landauer

Equilibrium, no external force

$$I = G\Delta V + G_S\Delta T$$
Ohmic Seebeck current current

$$G \atop G_S$$
 $\{ \propto A \int D(E)(f_1 - f_2) \}$ $\{ \propto \int D(E) \left(-\frac{\partial f_0}{\partial E} \right) \}$

No net current

Fermi Distribution

Thermoelectric phenomena - Landauer

When apply electric force

External force changes the chemical potential

Thermoelectric phenomena

When apply temperature difference on an open circuit

Temperature difference changes charge Fermi distribution

$$A = \begin{cases} 1 & \text{for } G \\ E - \mu & \text{for } G_S \end{cases}$$

Thermoelectric phenomena - Landauer

Peltier effect

Thermoelectric phenomena - Landauer

Intrinsic semiconductor has zero seebeck

Thermoelectric phenomena - Landauer

Asymmetric DOS -> higher Seebeck

Thermoelectric phenomena - Landauer

Highest $D(E)\left(-\frac{\partial f_0}{\partial E}\right)$ occurs when Fermi level is close to band edge.

Transport coefficients - Boltzmann

Optimizing power factor

Seebeck coefficient
$$\alpha = \frac{1}{qT} \frac{\int \tau v^2(E-E_F)(-\frac{\partial f_0}{\partial E})d^3k}{\int \tau v^2(-\frac{\partial f_0}{\partial E})d^3k}$$
 Electrical conductivity
$$\sigma = \frac{q^2}{4\pi^3} \int \tau v^2(-\frac{\partial f_0}{\partial E})d^3k$$

$$ZT = \frac{\alpha^2\sigma}{\kappa_e + \kappa_{ph}}T$$

Transport coefficients - Boltzmann

Optimizing power factor

- Optimize the interaction between transport coefficients
- Doping, defect scattering, energy filtering

Seebeck coefficient

$$\alpha = \frac{8\pi^2 k_B^2}{3qh^2} m^* T (\frac{\pi}{8n})^{\frac{2}{3}}$$
Electrical conductivity
$$\sigma = qn (\frac{q\tau}{m^*})$$

$$zT = \frac{\alpha^2 \sigma}{\kappa_e + \kappa_{ph}} T$$
Wiedemann-Franz law
$$\kappa_e = nq\mu \mathcal{L}T$$

Bulk transport properties

- \triangleright How much electrons/ holes, α , n
- \triangleright The ability electrons/ holes move, σ , μ , n
- The ability heat propagate, κ
- \triangleright Expect zT > 1

Interface transport properties

- Non-rectifying contact
- Rectifying contact, R_C
- Interface states, N_a

Non-rectifing (Ohmic contact)

Interface transport properties

Rectification

Forward V

High contact resistance R_C!!

The ideal non-rectifying barriers (Ohmic contact)

Metal work function $\phi_m \approx$ Semiconductor electron affinity χ

Rectifying barriers (Schottky contact)

Metal work function $\phi_m >>$ Semiconductor electron affinity χ

Barrier height $\phi_{bo} = \phi_m - \chi$

The Tunneling Barriers

Depletion region

$$V = \sqrt{rac{2\epsilon_s(e\phi_{bi} + V - rac{kT}{e})}{eN_d}}$$
 $e\phi_{bi}$ -- Dielectric constant -- Fixed $e\phi_{bi}$ -- Build-in potential -- Fixed N_d -- Doping concentration -- Manipulative \odot

More complicated- interface states in reality

- > Pinning the Fermi level
- > High density of surface states
 - \rightarrow Dielectric barrier χ_i , dominating!
- In real world, M-S interface is about
 - Selection of metal
 - Epitaxial growth

More complicated- interface states in reality

- > Pinning the Fermi level
- High density of surface states
 - \rightarrow Dielectric barrier χ_i , dominating!
- ➤ In real world, M-S interface is about
 - Selection of metal
 - Epitaxial growth

Sum up:

Bulk transport – two approaches

Laudauer approach – illustrative for phenomena

BTE – describtive for correlations between α , n, σ , μ , κ

Transport at interface

Non-rectifying contact

I need learn more from you