Development of proton conducting electrolyser cells

Marie-Laure Fontaine, Christelle Denonville, Jonathan Polfus, Wen Xing, Paul Inge Dahl, Tor Olav Sunde, Rune Bredesen

SINTEF Materials and Chemistry
Thin Film and Membrane Technologies Department
High temperature electrolysers with novel proton ceramic tubular modules (2014-2017)

Fabrication of BZY-based segmented-in-series tubular electrolyser cells

Development of mixed proton-electron conducting anodes

Multi-tubes module development

H₂ production from steam and electricity

DME/Ethanol production from steam, CO₂ and electricity

Fabrication of BZY-based segmented-in-series tubular electrolyser cells

Development of mixed proton-electron conducting anodes

Multi-tubes module development
Solid State Reactive Sintering (SSRS)

Wet milling of precursor powders:
NiO + BaCO₃, Y₂O₃, ZrO₂, CeO₂

Drying of powders in oven

Pressing and sintering at T > 1400°C

BZCY based dense pellets with 1 wt. % NiO

- Limited number of processing steps
- Fine Homogeneous microstructure
- Fast sintering

- Cost effective
- Lower CO₂ emissions

- J. Tong, Ryan O'Hayre et al., J. Mater. Chem., 2010, 20
SSRS for enabling cells production in ELECTRA

BZY10: $\text{BaZr}_{0.90}\text{Y}_{0.10}\text{O}_{3-\delta}$
BZCY72: $\text{BaZr}_{0.70}\text{Ce}_{0.20}\text{Y}_{0.10}\text{O}_{3-\delta}$

Fuel electrode: NiO + $\text{BaCO}_3, \text{Y}_2\text{O}_3, \text{ZrO}_2$
Electrolyte: $\text{BaCO}_3, \text{Y}_2\text{O}_3, \text{ZrO}_2$

NiO+ BZY10 or NiO + BZCY72 (60/40 vol. %)

Notation: BZY10 // BZY10-NiO

Electrolyte

Electrode

and

Fuel electrode: NiO + $\text{BaSO}_4, \text{Y}_2\text{O}_3, \text{ZrO}_2$, with and without CeO$_2$
Electrolyte: $\text{BaSO}_4, \text{Y}_2\text{O}_3, \text{ZrO}_2$, with and without CeO$_2$
Solid state reactive sintering for BZY based cell production

- Pastes and suspensions
- Extrusion of fuel electrode
- Electrolyte deposition
- Co-sintering

SONATE 100 m² clean room

- Drying in air

- SONATE 100 m² clean room

- Dry milling of SSRS based precursors

- Dip-coating suspensions

- NiO based paste

- 40-ton extruder with automatic capping, cutting and air transport belt

- Automatic dip-coater Max 1m long tube

- 10-25 cm long tubes
Investigated parameters

- Fuel electrode extrusion
 - Paste formulation (solid loading, binder and water content)
 - Mixing procedure
 - Extrusion parameters
 - Drying and polishing

- Dip-coating of electrolyte
 - Suspension formulation (solid loading, binder content)
 - Milling procedure
 - Coating parameters

- Reduction of half-cells
 - Temperature
 - Atmosphere

- Co-sintering
 - Temperature, dwell time
 - Heating & cooling rates
 - Atmospheres
Drying and polishing

Tubes after extrusion and roll-drying in air for 24h

Close end from capping system

Dried tubes after polishing with wet clean room tissue

"Green" tubes after coating

15 cm
SSRS-based suspensions

- Water-based suspension
 (cellulose based binder)
 \(\text{BaSO}_4, \text{Y}_2\text{O}_3, \text{ZrO}_2, \text{CeO}_2 \)

- Organic-based suspension
 \(\text{BaCO}_3, \text{Y}_2\text{O}_3, \text{ZrO}_2, \text{CeO}_2 \)

Protocol:
Planetary milling of powders + binders + water or solvent @ 300 rpm – 2h

Viscosity around 19 cP at 60 rpm using LV2 spindle

Viscosity 110-175 cP at 60 rpm with LV2 spindle
BZY10 // BZY10-NiO using BaCO$_3$ based precursor mixture

1610°C - 6h: surface view of electrolyte

1610°C - 6h: surface view of uncoated electrode

BaNiY$_2$O$_5$

NiO

BaNiO$_2$
BZY10 // BZY10-NiO using BaCO$_3$ based precursor mixture

1550°C - 24h

Ba$_2$NiY$_2$O$_5$

BaNiO$_2$
BZY10 // BZY10-NiO using \(\text{BaCO}_3 \) based precursor mixture

Wet 4\%H\(_2\)/Ar @ 900°C

Cracks in electrolyte

\(\text{Y}_2\text{O}_3 \)

\(\text{BaNiY}_2\text{O}_5 \)

\(\text{Ni} \)

\(\text{BaNiY}_2\text{O}_5 \)
SSRS BZY pellet with 2wt% NiO

![Dilatometry in air HT XRD](image)

![Graph showing thermal expansion vs. temperature](image)

$\text{BaNi}_2\text{Y}_2\text{O}_5$

Temperature (°C) vs. Thermal expansion (%)

SSRS BZY pellet with 2wt% NiO

\[
\text{BaNiY}_2\text{O}_5
\]

4 microns

1 microns

θ
Investigated half-cells with BaSO_4 precursor
BZCY72 // BZCY72-NiO

Dense electrolyte @
1550°C – 24h
1610°C – 6h

BZY10 // BZY10-NiO

Dense electrolyte @
1550°C – 24h
1610°C – 6h

BZY10 // BZCY72-NiO

Dense electrolyte @
1550°C – 24h
1610°C – 6h
BZCY72 // BZCY72-NiO

1550°C – 24h

Grain size:
Large: 5 microns
Small: 2 microns

Grain growth

1610°C – 6h

Grain size:
5-10 microns
Reduction of half-cells

- Wet Harmix at 900°C

![Image showing a microstructure with a scale of 40 microns]

Hg-porosimetry

- Between 27-32 vol% porosity (with 60 vol% Ni)
BZY10 // BZY10-NiO

1610°C - 6h
"BZY10" // BZCY72-NiO

2% Ce in BZY

100 microns

10 microns
Characterization

Phases evolution
- HT-XRD up to 1200°C
- TGA / DSC up to 1400°C
- • BaSO₄
- • BaSO₄, Y₂O₃, ZrO₂, CeO₂ or without CeO₂
- • NiO - BaSO₄, Y₂O₃, ZrO₂, CeO₂ or without CeO₂

Microstructural evolution
- HT-ESEM up to 1400°C
- Ex-situ SEM-EDS analyses
- • Green half-cells
- • Green coated half-cells
- • Half-cells annealed from 1550°C – 1670°C

Sintering behaviour
- Dilatometry (push rod) up to 1500°C
- Fast sintering up to 1600°C
- • BaSO₄, Y₂O₃, ZrO₂, CeO₂ or without CeO₂
- • NiO - BaSO₄, Y₂O₃, ZrO₂, CeO₂ or without CeO₂
- • Green half-cells
BaSO₄

Ortho to cubic

Shift in relative peak intensity

TGA/DSC in air & HT-XRD

XRD: BaSO₄ Pbnm

Optical dilatometry
NiO - BaSO$_4$, Y$_2$O$_3$, ZrO$_2$, CeO$_2$

SSRS mixture BZY10-NiO
SSRS mixture BZCY72-NiO
BaSO$_4$ powder
Heating to 1600°C @ 2°C/min - 10 min dwell

NiO ensures mechanical strength

BZY10 // BZY10-NiO

BZCY72 // BZCY72-NiO

BZCY72+NiO ensure mechanical strength
Summary

• Sintering of BZY10 electrolyte not yet achieved
 • Further experiments in progress to understand limiting factors

• Successful fabrication of tubular half-cells with BCZY based electrolytes (20%Ce; 2%Ce)
 • Samples are given for air electrode development

Presentation Einar Vøllestad A8.03
Acknowledgements

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621244.

Research Council of Norway for the BIOPCFC project (number 219731/O70)

My colleagues at ELECTRA:
Dr. Dustin Beeaff (CoorsTek Membrane Sciences)
Prof. Truls Norby (UiO)
Ragnar Strandbakke (UiO)
Dr. Anna Magraso (UiO, CSIC)

Thank you