Adrian Montgomery Ruf
Postdoctoral Fellow
-
Differential Equations and Computational Mathematics

Norwegian version of this page
Email
adrianru@math.uio.no
Room
1118
Username
Visiting address
Moltke Moes vei 35
Niels Henrik Abels hus
0851 Oslo
Postal address
Postboks 1053 Blindern
0316 Oslo
Preprints
- S. Mishra, D. Ochsner, A. M. Ruf, and F. Weber, Well-posedness of Bayesian inverse problems for hyperbolic conservation laws [arxiv]
Education
- Since 2022: Postdoc at the University of Oslo, Norway
- 2019--2022: Postdoc at ETH Zürich, Switzerland
- 2019: PhD at the University of Oslo, Norway
- 2016: MSc Mathematics at the TU Berlin, Germany
- 2013: BSc Mathematics at the TU Berlin, Germany
Popular Science
- The complete guide to a PhD for new PhD students by slightly less new PhD students (with Sylvia Qinghua Liu)
-
What is a Researcher? (with Kristian A. Hiorth, Jonas van den Brink, Emil André Valaker)
-
The best card trick? Puzzle number 13 for the Matheon advent calendar
Publications
-
Fjordholm, Ulrik Skre & Ruf, Adrian Montgomery (2021). Second-order accurate TVD numerical methods for nonlocal nonlinear conservation laws. SIAM Journal on Numerical Analysis. ISSN 0036-1429. 59(3), p. 1167–1194. doi: 10.1137/20M1360979. Full text in Research Archive
-
Badwaik, Jayeesh; Klingenberg, Christian; Risebro, Nils Henrik & Ruf, Adrian Montgomery (2021). Multilevel Monte Carlo finite volume methods for random conservation laws with discontinuous flux. Mathematical Modelling and Numerical Analysis. ISSN 0764-583X. 55(3), p. 1039–1065. doi: 10.1051/m2an/2021011. Full text in Research Archive
-
Risebro, Nils Henrik & Ruf, Adrian Montgomery (2019). Numerical investigations into a model of partially incompressible two-phase flow in pipes. SeMA Journal - Boletin de la Sociedad Española de Matemática Aplicada. ISSN 2254-3902. p. 1–17. doi: 10.1007/s40324-019-00207-9. Full text in Research Archive
-
Ruf, Adrian Montgomery; Sande, Espen & Solem, Susanne (2019). The Optimal Convergence Rate of Monotone Schemes for Conservation Laws in the Wasserstein Distance. Journal of Scientific Computing. ISSN 0885-7474. 80(3), p. 1764–1776. doi: 10.1007/s10915-019-00996-1. Full text in Research Archive
-
Ridder, Johanna & Ruf, Adrian Montgomery (2019). A convergent finite difference scheme for the Ostrovsky–Hunter equation with Dirichlet boundary conditions. BIT Numerical Mathematics. ISSN 0006-3835. 59, p. 775–796. doi: 10.1007/s10543-019-00746-7.
-
Ruf, Adrian Montgomery (2017). Convergence of a full discretization for a second-order nonlinear elastodynamic equation in isotropic and anisotropic Orlicz spaces. Zeitschrift für Angewandte Mathematik und Physik. ISSN 0044-2275. 68:118(5), p. 1–24. doi: 10.1007/s00033-017-0863-z. Full text in Research Archive Show summary
-
Ruf, Adrian Montgomery (2019). Second-order numerical methods for nonlocal conservation laws.
-
Ruf, Adrian Montgomery (2019). The optimal convergence rate of monotone schemes for conservation laws in the Wasserstein distance.
-
Ruf, Adrian Montgomery (2019). A second-order scheme for a class of nonlocal conservation laws.
-
Ruf, Adrian Montgomery (2018). A second-order method for nonlocal conservation laws.
-
Ruf, Adrian Montgomery (2018). The Ostrovsky-Hunter equation with Dirichlet boundary conditions.
-
Ruf, Adrian Montgomery (2018). The Ostrovsky-Hunter equation with Dirichlet boundary conditions.
-
Ruf, Adrian Montgomery (2017). Multiphase Flow in Pipelines.
-
Ruf, Adrian Montgomery (2017). What is a Researcher?
-
Ruf, Adrian Montgomery & Liu, Qinghua (2017). The complete guide to a PhD for new PhD students by slightly less new PhD students.
-
Ruf, Adrian Montgomery (2016). A class of nonlinear evolution equations of second order.
Published Aug. 22, 2016 1:42 PM
- Last modified Apr. 29, 2022 2:47 PM