# Ivan Panin: Framed motives of algebraic varieties

This talk is supposed to be an Introductionary talk to the preprint arXiv:1409.4372v4 (joint work with G.Garkusha). More specifically, using the theory of framed correspondences developed by Voevodsky, the authors introduce and study framed motives of algebraic varieties. This study gives rise to a construction of the big frame motive functor. It is shown that this functor converts the classical Morel--Voevodsky motivic stable homotopy theory into an equivalent local theory of framed bispectra, and thus producing a new approach to stable motivic homotopy theory. As a topological application, it is proved that for the simplicial set Fr(Delta^\bullet_C, S^{^1}) has the homotopy type of the space \Omega^{\infty} Sigma^{\infty} (S^{^1}). Here C is the field complex numbers.