Publikasjoner
-
Aarskog, Fredrik Gundersen; Danebergs, Janis; Strømgren, Trond & Ulleberg, Øystein (2020). Energy and cost analysis of a hydrogen driven high speed passenger ferry. International Shipbuilding Progress.
ISSN 0020-868X.
67 . doi:
10.3233/ISP-190273
Fulltekst i vitenarkiv.
-
Aarskog, Fredrik Gundersen; Hansen, Olav R.; Strømgren, Trond & Ulleberg, Øystein (2019). Concept risk assessment of a hydrogen driven high speed passenger ferry. International Journal of Hydrogen Energy.
ISSN 0360-3199.
s 1- 14 . doi:
10.1016/j.ijhydene.2019.05.128
Fulltekst i vitenarkiv.
-
Ulleberg, Øystein & Hancke, Ragnhild (2019). Techno-economic calculations of small-scale hydrogen supply systems for zero emission transport in Norway. International Journal of Hydrogen Energy.
ISSN 0360-3199.
45(2), s 1201- 1211 . doi:
10.1016/j.ijhydene.2019.05.170
Fulltekst i vitenarkiv.
-
Vatani, Mohsen; Vie, Preben Joakim Svela & Ulleberg, Øystein (2018). Cycling Lifetime Prediction Model for Lithium-ion Batteries Based on Artificial Neural Networks. IEEE PES Innovative Smart Grid Technologies Conference Europe.
ISSN 2165-4816.
. doi:
10.1109/ISGTEurope.2018.8571814
-
Bujlo, P.; Xie, C.J.; Shen, D.; Ulleberg, Øystein; Pasupathi, S; Pasciak, G. & Pollet, B.G. (2017). Hybrid polymer electrolyte membrane fuel cell–lithium- ion battery powertrain testing platform – hybrid fuel cell electric vehicle emulator. International Journal of Energy Research.
ISSN 0363-907X.
41(11), s 1596- 1611 . doi:
10.1002/er.3736
-
Maharjan, Sabita; Zhang, Yan; Gjessing, Stein; Ulleberg, Øystein & Eliassen, Frank (2015). Providing Microgrid Resilience during Emergencies using Distributed Energy Resources, In Ed Tiedemann; Dilip Krishnaswamy & Neeli R. Prasad (ed.),
2015 IEEE Global Communications Conference.
IEEE Press.
ISBN 978-1-4673-9526-7.
artikkel.
-
Andresen, Bjørg; Norheim, Arnstein; Strand, Jon; Ulleberg, Øystein; Vik, Arild & Wærnhus, Ivar (2014). BioZEG - Pilot plant demonstration of high efficiency carbon negative energy production. Energy Procedia.
ISSN 1876-6102.
63, s 279- 285 . doi:
10.1016/j.egypro.2014.11.030
Fulltekst i vitenarkiv.
-
Bujlo, P.; Pasupathi, S; Ulleberg, Øystein; Scholta, J.; Nomnqa, M.V.; Rabiu, A. & Pollet, B.G. (2013). Validation of an externally oil-cooled 1 kWel HT-PEMFC stack operating at various experimental conditions. International Journal of Hydrogen Energy.
ISSN 0360-3199.
38(23), s 9847- 9855 . doi:
10.1016/j.ijhydene.2013.05.174
-
Miland, Harald & Ulleberg, Øystein (2012). Testing of a small-scale stand-alone power system based on solar energy and hydrogen. Solar Energy.
ISSN 0038-092X.
86(1), s 666- 680 . doi:
10.1016/j.solener.2008.04.013
-
Tesfahunegn, Samson Gebre; Ulleberg, Øystein; Undeland, Tore Marvin & Vie, Preben Joakim Svela (2011). A simplified battery charge controller for safety and increased utilization in standalone PV applications, In Renato Rizzo (ed.),
International Conference on Clean Electrical Power (ICCEP), 2011.
IEEE conference proceedings.
ISBN 978-1-4244-8928-2.
Art. 6036367.
s 137
- 144
-
Tesfahunegn, Samson Gebre; Ulleberg, Øystein; Vie, Preben Joakim Svela & Undeland, Tore Marvin (2011). Optimal shifting of PV and load fluctuations from fuel cell and electrolyzer to lead acid battery in a PV/hydrogen standalone power system for improved performance and life time. Journal of Power Sources.
ISSN 0378-7753.
196(23), s 10401- 10414 . doi:
10.1016/j.jpowsour.2011.06.037
-
Tesfahunegn, Samson Gebre; Ulleberg, Øystein; Vie, Preben Joakim Svela & Undeland, Tore Marvin (2011). PV fluctuation balancing using hydrogen storage-a smoothing method for integration of PV generation into the utility grid. Energy Procedia.
ISSN 1876-6102.
12, s 1015- 1022 . doi:
10.1016/j.egypro.2011.10.133
-
Ito, Hisao; Maeda, Tatsuro; Kato, Atushi; Yoshida, Tetsuya & Ulleberg, Øystein (2010). Gas Purge for Switching from Electrolysis to Fuel Cell Operation in Polymer Electrolyte Unitized Reversible Fuel Cells. Journal of the Electrochemical Society.
ISSN 0013-4651.
157(7), s B1072- B1080 . doi:
10.1149/1.3428709
-
Tesfahunegn, Samson Gebre; Vie, Preben Joakim Svela; Undeland, Tore Marvin & Ulleberg, Øystein (2010). A Combined Steady State and Dynamic Model of a Proton Exchange Membrane Fuel Cell for use in DG system Simulation, In
The 2010 International Power Electronics Conference - ECCE ASIA - IPEC-Sapporo 21.-24. June 2010.
IEEE Press.
ISBN 978-1-4244-5395-5.
Article.
s 2457
- 2464
-
Ulleberg, Øystein; Nakken, Torgeir & Eté, Arnaud (2010). The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools. International Journal of Hydrogen Energy.
ISSN 0360-3199.
35(5), s 1841- 1852 . doi:
10.1016/j.ijhydene.2009.10.077
-
Førde, Thomas; Eriksen, J.; Pettersen, Anders Gustav; Vie, Preben Joakim Svela & Ulleberg, Øystein (2009). Thermal integration of a metal hydride storage unit and a PEM fuel cell stack. International Journal of Hydrogen Energy.
ISSN 0360-3199.
34(16), s 6730- 6739 . doi:
10.1016/j.ijhydene.2009.05.146
Vis sammendrag
A metal hydride (MH) storage unit and a polymer electrolyte membrane (PEM) fuel cell (FC) stack were thermally integrated through a common water circulation loop. The low temperature waste heat dissipated from the fuel cell stack was used to enhance and ensure the release of hydrogen from the storage unit. A water-heated MH-tank can be made more compact than an air-heated MH-tank with external heating fins, due to more direct heat transfer between MH-alloy and heating/cooling media. A water-heated MH-tank will therefore have the potential for better kinetics for absorption and desorption of hydrogen. The fuel cell stack and metal hydride storage unit were characterised and a control strategy was developed for fast start-up of the fuel cell stack. The main priority for the strategy was to maintain the metal hydride temperature at room temperature, while increasing the FC temperature to the specified operating temperature. The preferred strategy for this system was to increase the fuel cell temperature to at least 40 degrees C before starting to heat the metal hydride storage unit to 30 C. Without thermal integration, it was not possible to utilize the full hydrogen storage capacity of the metal hydride storage unit due to cooling of the tank. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Se alle arbeider i Cristin
-
Aarskog, Fredrik Gundersen; Danebergs, Janis; Strømgren, Trond & Ulleberg, Øystein (2020). Energy and cost analysis of a hydrogen driven high speed passenger ferry.
-
Hancke, Ragnhild & Ulleberg, Øystein (2020). Hydrogen application in the Norwegian transport sector.
-
Hansen, Olav R. & Ulleberg, Øystein (2020). Hydrogen Safety in the Maritime.
Vis sammendrag
Joint Session with the IPHE Regulations, Codes, Standards & Safety Working Group on Maritime Considerations. Norwegian learning experiences: 1. Most important safety issues on hydrogen vessels 2. Risk and explosion study required to class a hydrogen vessel 3. Research priorities on compressed hydrogen tanks and liquid hydrogen 4. Recommendation with respect to rules
-
Ulleberg, Øystein (2020). Decarbonization of Transport: A Norwegian perspective on Zero-Emission Transport.
-
Ulleberg, Øystein (2020). Heavy-Duty Transport and Hydrogen in the Maritime.
-
Ulleberg, Øystein (2020). Hydrogen for Zero-Emission Transport.
-
Ulleberg, Øystein (2020). MoZEES Maritime Case Study and H2Maritime Project.
Vis sammendrag
Presentation of MoZEES Maritime Case Study (Part 2): Method to estimate Hydrogen Demand and Total Cost of Ownership of Ferries and other Vessels Presentation of H2Martime Project: Hydrogen and Fuel Cell for Maritime Applications
-
Ulleberg, Øystein (2020). Renewable Energy & Zero-Emission Electrical Transport Systems.
-
Ulleberg, Øystein (2020). Zero Emission Transport in Norway: New Markets and Applications.
Vis sammendrag
Overview of transport markets in the EU and battery electric vehicle market in Norway. Issues related to sector coupling between energy and transport systems. Overview of MoZEES-project and results from hydrogen truck feasibility study.
-
Bettzüge, Marc Oliver; Blok, Kornelius; Bradshaw, Alex; Bruce, Peter; Duic, Neven; Frank, Harry; Georges, Gil; Giannopoulos, George; Hamacher, Thomas; Johnsson, Filip; Kretzschmar, Jan; La Poutré, Han; Laurikko, Juhani; Oswald, Kirsten; Schmidt, Thomas Justus; Sturm, Peter-Johann; Ulleberg, Øystein; Gillett, William & Boulouchos, Konstantinos (ed.) (2019). Decarbonisation of transport: Options and challenges.
Vis sammendrag
This report was triggered by discussions between members of the European Academies’ Science Advisory Council’s (EASAC’s) energy steering panel on the challenges faced by the European Union (EU) in the light of the Paris Agreement; in particular, the challenge of reducing emissions from the transport sector, which relies almost totally on fossil fuels. It was also stimulated by the EU energy and climate package, which was released in November 2016, entitled ‘Clean Energy for all Europeans‘, and the three packages of the EU initiative ‘Europe on the Move‘. A group of 18 experts, who had each been nominated by their national science academies, came together in July 2017 to discuss the decarbonisation of transport at a workshop with officials from six Directorates- General of the European Commission (Mobility and Transport (MOVE); Energy (ENER); Climate Action (CLIMA); Environment (ENV); Regional and Urban Policy (REGIO); and Joint Research Centre (JRC)) as well as experts from the International Transport Forum within the Organisation for Economic Cooperation and Development (ITF-OECD), the European Automobile Manufacturers’ Association (ACEA) and Local Governments for Sustainability (ICLEI). During the workshop, it was noted that greenhouse gas (GHG) emissions from the European transport sector currently represent approximately 24% of total GHG emissions from the EU and that, within this sector, the emissions were dominated by those from road transport (72%): those from passenger cars and light-duty vehicles (LDVs) amounted to about 53% and those from buses and heavy goods vehicles to about 19%. After the workshop, it was concluded that EASAC should focus on the biggest challenge, namely road transport. This report therefore examines decarbonisation of road transport, with only brief comments on rail, maritime and aviation transport. It has separate chapters on demand and supply perspectives, and adopts a framework for tackling these challenges using sustainable solutions for the long term and transitional solutions for the short term.
-
Danebergs, Janis; Ulleberg, Øystein & Nordgreen, Thomas (2019). Techno-economic Study of Hydrogen as a Heavy-duty Truck Fuel, A Case Study on the Transport Corridor Oslo – Trondheim.
Vis sammendrag
Norway has already an almost emission-free power production and its sales of zero-emission light-duty vehicles surpassed 30% in 2018; a natural next challenge is to identify ways to reduce emissions of heavy-duty vehicles. In this work the possibilities to deploy Fuel Cell Electric Trucks (FCET) on the route Oslo-Trondheim are analyzed by doing a techno-economic analysis. The literature study identified that in average 932 kton goods where transported between the cities. The preferred road choice goes through Østerdalen and that an average load for a long-distance truck is 16 tons. The methodology used in the study is based on cost curves for both truck and infrastructure, and a case study with various scenarios is evaluated to find a profitable business case for both an FCET fleet and its infrastructure. The cost curves for trucks are based on total cost of ownership (TCO) as a function of hydrogen price, while the levelized cost of hydrogen (LCOH) is used to present the cost of infrastructure. An analysis was made to identify the trucks component sizes and a FCET for this route would require an onboard hydrogen storage of 46 kg, a fuel cell stack with a nominal power of 200 kW, a battery of 100 kWh (min SOC 22%), and an electric motor with a rated power of 402 kW. TCO was calculated both for an FCET based on the dimensioned components and a biodiesel truck. The results show that an FCET purchased in 2020 can be competitive with biodiesel with a hydrogen price of 38.6 NOK/kgH2. While the hydrogen price can increase to 71.8 NOK/ kgH2 if the FCET is purchased in 2030. To identify the most suitable infrastructure, four different designs of hydrogen refueling stations (HRS) were compared. Furthermore, hydrogen production units (HPUs) with both alkaline or PEM type water electrolyzer were compared. The analysis in this study showed that the most cost competitive option was a 350-bar HRS without cooling, which only can serve type III onboard storage tanks. A HPU with alkaline electrolyzer was the most price competitive alternative. In case each HRS is refueling more than 7 FCETs per day, an HPU in direct connection to HRS is the preferred infrastructure setup. Three HRS are required along the route to ensure a minimum service level for the FCETs. When the TCO of the fuel cell truck and LCOH of the hydrogen infrastructure were compared for a 2020 scenario, no feasible solution was identified. The cost of installing three HRS in 2020, serving a fleet of 14-24 trucks, would cost 16.0 – 17.6 million NOK/year more than a fleet based on biodiesel trucks. In a future scenario, where both the FCET and infrastructure costs decrease due to expected learning curves, a business case can be found if at least 5 FCETs were refueling at each HRS on daily basis, which corresponds to a total fleet of approx. 24 FCETs. Finally, a set of clear recommendations on how to improve the techno-economic analysis in future studies are provided. Both by identifying areas lacking sufficient documentation and by providing steps how the tecno-economic model could be enhanced.
-
Fridstrøm, Lasse; Eskeland, Gunnar & Ulleberg, Øystein (2019, 05. juni). Decarbonising shipping. [Internett].
PODCAST.
-
Fridstrøm, Lasse; Eskeland, Gunnar & Ulleberg, Øystein (2019, 05. juni). Dekarbonisering av sjøveien. [Internett].
PODCAST.
-
Fridstrøm, Lasse; Ulleberg, Øystein & Eskeland, Gunnar (2019, 11. mars). Decarbonising the highway. [Internett].
PODCAST.
-
Hancke, Ragnhild; Ulleberg, Øystein; Skattum, Ragnar; Torp, Vidar & Jensen, Jan-Erik (2019). High Differential Pressure PEMWE System Laboratory. Fulltekst i vitenarkiv.
-
Tomasgard, Asgeir; Berstad, David Olsson; Blekkan, Edd Anders; Karstad, Per Ivar; Burheim, Odne Stokke; Dawson, James; Espegren, Kari Aamodt; Løvås, Terese; Meyer, Julien; Møller-Holst, Steffen; Nekså, Petter; Pollet, Bruno; Størset, Sigmund Østtveit; Sundseth, Kyrre; Thomassen, Magnus & Ulleberg, Øystein (2019). Hydrogen i fremtidens lavkarbonsamfunn.
-
Ulleberg, Øystein (2019). Batteri- og hydrogenteknologi for maritim sektor.
-
Ulleberg, Øystein (2019). Batteri- og hydrogenteknologi for nullutslipp i transport.
-
Ulleberg, Øystein (2019, 24. september). Forsker vil ha trykksatt framfor flytende hydrogen til skip for å unngå «Tesla-fellen». [Fagblad].
https://tu.no.
-
Ulleberg, Øystein (2019, 27. juni). Hydrogen i transport. [Fagblad].
https://nelhydrogen.com/press-release/press-release-invitati.
-
Ulleberg, Øystein (2019). Hydrogen i transportsektoren.
-
Ulleberg, Øystein (2019, 15. juni). Hydrogeneksplosjonen ved Uno-X Hydrogenstasjonen på Kjørbo. [Radio].
https://radio.nrk.no/serie/ukeslutt.
-
Ulleberg, Øystein (2019). Innspill fra Institutt for energiteknikk.
-
Ulleberg, Øystein (2019). Integrated Energy and Transport Systems - From Decarbonization to Zero Emission.
-
Ulleberg, Øystein (2019). Renewable Energy based Water Electrolysis.
-
Ulleberg, Øystein (2019, 13. juni). Sandvika-eksplosjonen: Forsker frykter at hydrogenutviklingen vil stoppe opp. [Internett].
https://e24.no.
-
Ulleberg, Øystein; Gillett, William; Boulouchos, Konstantinos; Duic, Neven & Giannopoulos, George (2019). Decarbonisation of Transport – Policy Options and Ethical Challenges.
-
Østigård, Morten; Sartori, Sabrina; Ulleberg, Øystein & Gunnæs, Anette E. (2019). Advanced Modelling of NiMH Batteries: Integrating Renewable Energy Sources into EV Charging Stations.
Vis sammendrag
This thesis is devoted to the topic of energy storage system modelling, and to the integration of such systems to increase the utilisation of renewable energy. In particular, the use of a nickel-metal hydride battery storage system is considered in combination with energy produced by solar and wind to power an electric vehicle fast-charging station situated in Norway. The thesis aims to develop a flexible model for the battery energy storage system that can accurately describe battery performance and performance-reducing effects. The motivation of which is to be able to evaluate the feasibility of the charging topology in mention. A semi-empirical, battery model based on real data is designed and implemented in the Simulink modelling environment. Further, a system model is developed in the same modelling environment which uses actual data from Norwegian renewable energy producers and charging station operators. We report on the influence of renewable energy mixture, capacity sizing, production sizing and vehicle charging behaviour on the feasibility of the topology. The thesis is written as a contribution of the now finished project INTEGRARE (Intelligent prediction and integration of renewable energy sources into the Norwegian electricity grid, headed by the Department of Technology Systems). The topic is in line with an ongoing effort in the energy storage system research group to promote, design, model and validate the feasibility of energy systems powered by renewable energy sources.
-
Ulleberg, Øystein (2018). Hydrogen til maritim transport Hvordan bør vi gå fram? Er det trygt?.
-
Ulleberg, Øystein (2018). Hydrogenteknologi for maritim transport.
-
Ulleberg, Øystein (2018). MoZEES - Mobility Zero Emission Energy Systems.
Vis sammendrag
Presentasjon av MoZEES
-
Ulleberg, Øystein (2018). På vei mot et helelektrisk transportsystem - Hva er utviklingstrekkene?.
-
Ulleberg, Øystein & Aarskog, Fredrik (2018). MoZEES Maritime Case Study on a Hydrogen and Fuel Cell Driven High Speed Passenger Ferry.
-
Ulleberg, Øystein & Hancke, Ragnhild (2018). Local Hydrogen Supply for Zero Emission Transport.
Vis sammendrag
The supply of hydrogen for zero emission transport is challenging, especially if the hydrogen is to be produced locally based on renewable energy sources. In order to claim zero emission in the full value chain (from production to utilization), it is necessary to avoid CO2-emissions from the production and distribution of hydrogen. In countries where the fraction of renewable power is very high, such as in Norway (nearly 100% with hydroelectric power), it is natural consider water electrolysis as the main production method. Reforming of natural gas with CO2-capture and storage is also an option, but this can only be realized in large centralized plants designed to capture and store several million tonnes of CO2 per year. Hence, our options today are limited to reforming of biogas and renewable energy based water electrolysis. The focus in Norway is today on the development of water electrolysis based hydrogen supply systems. In Norway there is currently a national discussion on how and where to build up hydrogen refueling infrastructure. Some argue that a national network of 700 bar hydrogen refueling stations must be established as soon as possible so that the market for fuel cell passenger cars can be allowed to grow faster, while others argue that we should focus on establishing 350 bar stations for fleet vehicles such as trucks and buses. On-site small water electrolyzer systems are modular, and can be developed for many different sizes and capacities. Hydrogen can also be trucked in from a centralized hydrogen production plant to the hydrogen refueling stations. A combination with some local hydrogen supply (via water electrolysis) and some trucked in hydrogen may also be an option. The focus in this presentation is on 350 bar systems for fleets of heavy duty fuel cell vehicles (trucks). A techno-economic modelling tool which can be used to estimate the costs of different designs of water electrolysis based hydrogen refueling stations has been developed at IFE. This tool has been applied to different case studies over the past few years. The program developed can be adjusted and used to access the techno-economics of a wide range of renewable power based water electrolyzers systems, including hydrogen compression, storage and dispensing systems. The models are based on up-to-date technical performance data obtained from leading PEM and alkaline water electrolyzer and other hydrogen technology suppliers around the world, and cost data collected in various projects conducted at IFE over the past few years. Results from techno-economic analyses of 350 bar hydrogen refueling stations (based on water electrolysis) show how it is possible to find cost-effective system designs for small fleets of heavy duty vehicles.
-
Vatani, Mohsen; Vie, Preben Joakim Svela & Ulleberg, Øystein (2018). Cycling Lifetime Prediction Model for Lithium-ion Batteries Based on Artificial Neural Networks.
-
Ulleberg, Øystein (2017, 24. oktober). Ekspertintervjuet: På vei mot ren transport. [Fagblad].
Energi og Klima.
-
Ulleberg, Øystein (2017). Hydrogen Production from Renewable Energy - New Reforming Processes & Systems.
Vis sammendrag
Presentation on alternative hydrogen production methods based on renewable energy sources such as biogas. Overview of activities on local hydrogen supply within member states of the International Energy Agency, including brief presentation of demonstration projects in Norway and Japan.
-
Ulleberg, Øystein (2017). Hydrogenproduksjon og vannelektrolyse.
Vis sammendrag
Norge har tilgang til store mengder med fornybar kraft, som blant annet kan benyttes til å produsere hydrogen. Hydrogenproduksjon via vannelektrolyse er kjent teknologi. Tradisjonelt har de største vannelektrolyseanleggene (MW-klasse) blitt koblet opp mot kraftsystemer med rikelig tilgang på stabil vannkraft (ref. Norge). I løpet av de siste årene har det også blitt utviklet ny teknologi som gjør det mulig å kjøre vannelektrolysører som kan følge svingninger i kraftproduksjonen, som f.eks. pga. variabel sol- og vindkraft (ref. Tyskland). I EU finnes det nå store FoU-programmer på hydrogen der det fokuseres på utvikling av neste generasjon med avanserte vannelektrolysesystemer, og på hvordan denne nye teknologien kan integreres i eksisterende og framtidige kraftsystemer. Flere studier viser at hydrogen produsert fra fornybar kan bidra til store reduksjoner i klimagassutslipp. Det bør her fokuseres på hydrogen til industrielle formål (erstatning til reformert hydrogen med CO2-utslipp), og som drivstoff til transportsektoren. Det finnes i dag batteri- og hydrogenteknologi som kan tas i bruk i lettere kjøretøyer. I Norge er det satt ambisiøse mål som skal lede til lav- og nullutslipp i transport, men dette vil kreve forskning og utvikling på batteri- og hydrogenteknologi som kan introduseres i tyngre transportapplikasjoner (vei, bane og sjø). Dette er motivasjonen for å etablere MoZEES (Mobility Zero Emission Energy Systems), et nasjonalt forskningssenter for miljøvennlig energi (FME) med fokus på batterier og hydrogen for nullutslipp i transportsektoren. Hovedformålet med denne FME’en vil være å bidra til utvikling av nye batteri- og hydrogenmaterialer, -komponenter og -systemer for eksisterende og framtidige applikasjoner innen transportsektoren (vei, bane og sjø). Forskningssenteret skal bidra til design og utvikling av sikre, pålitelige og kostnadseffektive nullutslippsløsninger for transport, inkludert FoU på hydrogenproduksjon via vannelektrolyse. Den siste forskningen og utviklingen innen vannelektrolyse, og eksempler på nye innovative hydrogensystemløsninger for eksisterende og framtidige kraftsystemer ble presentert.
-
Ulleberg, Øystein (2017). MoZEES - Mobility Zero Emission Energy Systems.
Vis sammendrag
Presentation of MoZEES, a new Norwegian research center on zero emission transport with focus on battery and hydrogen technology
-
Ulleberg, Øystein (2017). Nullutslipp i transport. Kan det satses på hydrogen?.
Vis sammendrag
Nullutslipp i transport. Kan det satses på hydrogen?
-
Ulleberg, Øystein (2017). Techno-Economic Modeling of Renewable Energy Hydrogen Supply Systems based on Water Electrolysis.
Vis sammendrag
There is a growing interest for using renewable power to run water electrolyzers for on-site production of hydrogen for supply to various energy, industrial, and transport applications. How can such systems become cost-efficient? A techno-economic modelling tool has been developed in order to try to answer this question. On-site small water electrolyzer systems are modular, and can be developed for many different sizes and capacities. Several international companies supply on-site hydrogen production system, and the technology readiness level is high (TRL 7-9). However, on a system level it is still necessary to develop more energy and cost-efficient solutions. In order to achieve this it will be necessary to both reduce the amount of materials used in the key components (e.g. cells and stacks) and to develop more efficient overall balance of plants (e.g. drying, compression, and storage, and electrical systems). A simplified equation based techno-economic modelling tool has been developed in EES (Engineering Equation Solver program). This program can adjusted and used to access the techno-economics of a wide range of renewable power based water electrolyzers systems, including hydrogen compression, storage and dispensing systems. The models are based on up-to-date technical performance data obtained from leading PEM and alkaline water electrolyzer and other hydrogen technology suppliers around the world, and cost data collected in various projects conducted at IFE over the past few years. The modelling tool has been applied in to evaluate the economic viability (business case) for both large-scale (4-5 MW) and small-scale (150-200 kW) hydro-electric power based water electrolysis systems. The techno-economic viability of a system (Figure) connected to a small-scale hydro-electric power plant in Norway is presented.
-
Ulleberg, Øystein (2017). Towards Zero Emission Transport - A Norwegian Perspective.
Vis sammendrag
Presentation of MoZEES, a new Norwegian research center for climate friendly energy with focus on zero emission transport using battery and hydrogen technology.
-
Ulleberg, Øystein & Aarskog, Fredrik (2017, 18. april). Hydrogen og batterier trenger ikke være enten eller. Kanskje er den ultimate løsningen hybrid. [Fagblad].
Teknisk ukeblad (TU).
-
Ulleberg, Øystein & Gjerløw, Jan Carsten (2017). Hydrogenproduksjon ved småkraftverk. Case studie Rotnes Bruk. IFE/KR. E-2017/001. Fulltekst i vitenarkiv.
-
Ulleberg, Øystein & Gjerløw, Jan Carsten (2017). Hydrogenproduksjon ved småkraftverk: Case studie Rotnes Bruk.
Vis sammendrag
Hovedformålet med prosjektet har vært å analysere og evaluere de tekno-økonomiske aspektene vedrørende hydrogenproduksjon fra småkraftverk, og skissere hvordan implementering av en eventuell hydrogenproduksjon ved Rotnes Bruk kraftverk i Nittedal kan gjennomføres. To ulike konsepter (case) for produksjon av hydrogen via vannelektrolyse med kraft fra Rotnes Bruk, videre kompresjon, lagring, distribusjon og anvendelse i transport har blitt evaluert. En sammenligning av de to ulike konseptene viser at lokal produksjon og distribusjon (Case 1) kan være å anbefale, men dette krever en god og langsiktig avtale for henting og distribusjon av hydrogen. Produksjon med lokal hydrogenstasjon i Nittedal (Case 2), krever at det etableres en lokal kjøretøysflåte, og gir i så måte en litt mer utfordrende forretningsmodell. Lokal produksjon av hydrogen ved Rotnes Bruk gir en hydrogen-produksjonskostnad på 109 NOK/kg (129 NOK/kg, inkl. frakt og levering til en hydrogenstasjon i regionen). Med 50 % investeringsstøtte vil det være mulig å komme ned i 66 NOK/kg (86 NOK/kg, inkl. frakt og levering). Dette er høyere enn dagens markedspris ved hydrogenstasjoner (72 NOK/kg). Hydrogenproduksjon ved Rotnes Bruk kan være økonomisk interessant i en tidlig fase av markedsutviklingen, men på sikt så vil trolig ikke et småskalaanlegg på 200 kW kunne konkurrere med større anlegg på noen MW. Årsaken til dette er de relativt høye investeringskostnadene; mer kostnadseffektive småskala vannelektrolysører og hydrogenkompressorer må derfor utvikles dersom dette skal bli lønnsomt. Rapporten gir noen anbefalinger på hva som kreves for å få økonomi i tilsvarende hydrogenprosjekter ved andre småkraftverk i Norge. Prosjektet er finansiert av Norges vassdrags- og energidirektorat (NVE), og en del av et større prosjekt ved Småkraftforeningen om hydrogenproduksjon ved småkraftverk. Dette arbeidet er publisert i en åpen rapport fra Institutt for energiteknikk (IFE-KR-E-2017-001)
-
Rørvik, Per Martin; Barnet, Alejandro; Ulleberg, Øystein; Burheim, Odne Stokke & Thomassen, Magnus Skinlo (2016). Norwegian Fuel Cell and Hydrogen Centre (N-FCH).
-
Ulleberg, Øystein & Mørkved, Andreas (2008). Renewable energy and hydrogen system concepts for remote communities in the West Nordic region - The Nólsoy case study. IFE/KR. E-2008/002. Fulltekst i vitenarkiv.
Se alle arbeider i Cristin
Publisert 16. mai 2019 11:40
- Sist endret 13. mars 2020 13:22