Events

Upcoming

Time and place: , NHA B1120

Donaldson-Thomas and Pandharipande-Thomas theory are two approaches to counting curves on projective threefolds in terms of their moduli spaces of sheaves. An important special case in understanding the DT/PT correspondence the equivariant geometry of affine three-space with the natural coordinate action of the rank 3 torus. I will show how one can use new wall-crossing techniques to prove the equivariant K-theoretic DT/PT correspondence in this situation, which was previously known only in the Calabi-Yau limit.

This is part of an ongoing project with Felix Thimm and Henry Liu in which we aim to prove wall-crossing for virtual enumerative invariants associated to equivariant CY3 geometries by extending a vertex algebra formalism for wall-crossing developed by Joyce.

Time and place: , NHA B1120


Abstract: Tropical curves are piecewise linear objects arising as degenerations of algebraic curves. The close connection between algebraic curves and their tropical limits persists when considering moduli. This exhibits certain spaces of tropical curves as the tropicalizations of the moduli spaces of stable curves. It is, however, still unclear which properties of the algebraic moduli spaces of curves are reflected in their tropical counterparts.

In work with Renzo Cavalieri and Hannah Markwig we defined, in a purely tropical way, tropical psi classes in arbitrary genus. They are operational cocycles on a stack of tropical curves, which enjoy several properties that we know from their algebraic ancestors. We also computed two examples in genus one and gave a tropical explanation for the psi class on the moduli space of 1-marked stable genus-1 curves to be 1/24 times a point.

In my talk, I will report on joint work in progress with Renzo Cavalieri, where we explore the missing piece in the story: the link to algebraic geometry. I will explain how to obtain, if we are lucky, a family of tropical curves from a family of algebraic curves. Naturally, there also is a correspondence-type theorem that equates algebraic and tropical intersection products with psi classes, thus showing that the tropical computations done with Cavalieri and Markwig faithfully reflect the algebraic world.

Time and place: , University of Oslo

The 5th Scandinavian Gathering Around Remarkable Discrete Mathematics

Previous

Time and place: , NHA B1120

Gromov—Witten invariants are virtual counts of curves with prescribed conditions in a given algebraic variety. One of the main techniques to study Gromov—Witten invariants is degeneration. The degeneration formula expresses absolute Gromov—Witten invariants in terms of relative Gromov—Witten invariants of algebraic varieties with tangency conditions along boundary divisors.

Relative Gromov—Witten invariants with only one relative marking are relative invariants with maximal contacts along the unique relative marking. The local-relative correspondence proved by van Garrel—Graber—Ruddat states that genus zero relative invariants with maximal contacts are equal to local Gromov—Witten invariants of a line bundle. Local invariants are usually easier to compute. However, The degeneration formula usually involves relative invariants beyond maximal contacts (i.e. with several relative markings). I will explain a generalization of the local-relative correspondence beyond maximal contacts, hence determine all the genus zero relative invariants that appear in the degeneration formula.

This is based on joint work with Yu Wang.

Time and place: , NHA 108 University of Oslo
Time and place: , NHA B1120


Abstract: 

In this joint work in progress with Helge Ruddat and Bernd Siebert, we employ a particular type of Log Smooth Degeneration (LSD) to study the Geometry of Enumerative Mirror Symmetry (GEMS).
 
Mirror Symmetry is a broad conjecture that predicts that symplectic invariants of a Kähler manifold correspond to algebro-geometric invariants of a mirror-dual complex algebraic variety. This is generally proven by computing both sides.
 
In this work, we take the first steps towards a full enumerative correspondence that canonically identifies the invariants of both sides. To do so, we employ the Intrinsic Mirror Construction of Gross-Siebert. Then the enumerative correspondence passes through an intermediary tropical manifold and tropical invariants thereof.
 
I will start by briefly describing the string theory origins of mirror symmetry (Candelas-de la Ossa-Green-Parkes) followed by a brief description of the computational solution to the physics prediction (Givental Mirror Symmetry). Then I will outline our program which puts the physics intuition on firm ground and takes the first steps towards showing that Enumerative Mirror Symmetry follows from the geometric dualities of the Intrinsic Mirror Construction.
Time and place: , NHA 108

Phase tropical surfaces can appear as a limit of a 1-parameter family of smooth complex algebraic surfaces. A phase tropical surface admits a stratified fibration over a smooth tropical surface. We study the real structures compatible with this fibration and give a description in terms of tropical cohomology. As an application, we deduce combinatorial criteria for the type of a real structure of a phase tropical surface.

 

Time and place: , NHA 108

Phase tropical surfaces can appear as a limit of a 1-parameter family of smooth complex algebraic surfaces. A phase tropical surface admits a stratified fibration over a smooth tropical surface. We study the real structures compatible with this fibration and give a description in terms of tropical cohomology. As an application, we deduce combinatorial criteria for the type of a real structure of a phase tropical surface.

 

Time and place: , NHA 108

In 1962 Ehrhart proved that the number of lattice points in integer dilates of a lattice polytope is given by a polynomial — the Ehrhart polynomial of the polytope. Since then Ehrhart theory has developed into a very active area of research at the intersection of combinatorics, geometry and algebra.

The Ehrhart polynomial encodes important information about the polytope such as its volume and the dimension. An important tool to study Ehrhart polynomials is the h*-polynomial, a linear transform of the Ehrhart polynomial which is given by the numerator of the generating series. By a famous theorem of Stanley the coefficients of the h*-polynomial are always nonnegative integers. In this talk, we discuss generalizations of this result to weighted lattice point enumeration in rational polytopes where the weight function is given by a polynomial. In particular, we show that Stanley’s Nonnegativity Theorem continues to hold if the weight is a sum of products of linear forms that a nonnegative over the polytope. This is joint work with Esme Bajo, Robert Davis, Jesús De Loera, Alexey Garber, Sofía Garzón Mora and Josephine Yu.

 

 

Time and place: , NHA 108

In 1962 Ehrhart proved that the number of lattice points in integer dilates of a lattice polytope is given by a polynomial — the Ehrhart polynomial of the polytope. Since then Ehrhart theory has developed into a very active area of research at the intersection of combinatorics, geometry and algebra.

The Ehrhart polynomial encodes important information about the polytope such as its volume and the dimension. An important tool to study Ehrhart polynomials is the h*-polynomial, a linear transform of the Ehrhart polynomial which is given by the numerator of the generating series. By a famous theorem of Stanley the coefficients of the h*-polynomial are always nonnegative integers. In this talk, we discuss generalizations of this result to weighted lattice point enumeration in rational polytopes where the weight function is given by a polynomial. In particular, we show that Stanley’s Nonnegativity Theorem continues to hold if the weight is a sum of products of linear forms that a nonnegative over the polytope. This is joint work with Esme Bajo, Robert Davis, Jesús De Loera, Alexey Garber, Sofía Garzón Mora and Josephine Yu.

 

 

Time and place: , NHA 108 University of Oslo
Time and place: , NHA 108

In this talk we define a new category of matroids, by working on matroid polytopes and rank preserving weak maps. This lets us introduce the concept of categorical valuativity for functors, which can be seen as a categorification of the ordinary valuativity for matroid invariants.

 

We also show that this new theory agrees with what we know about valuative polynomials: several known valuative polynomials can be seen as a Hilbert series of some graded vector space and we prove that these graded vector spaces let us define a valuative functor in the new sense. 

 

Lastly, we sketch how to categorify a Theorem by Ardila and Sanchez, which states that the convolution of two valuative invariants (respectively, valuative functors) is again valuative.

 

This is based on a joint ongoing project with Ben Elias, Dane Miyata and Nicholas Proudfoot.

Time and place: , NHA 108

In this talk we define a new category of matroids, by working on matroid polytopes and rank preserving weak maps. This lets us introduce the concept of categorical valuativity for functors, which can be seen as a categorification of the ordinary valuativity for matroid invariants.

 

We also show that this new theory agrees with what we know about valuative polynomials: several known valuative polynomials can be seen as a Hilbert series of some graded vector space and we prove that these graded vector spaces let us define a valuative functor in the new sense. 

 

Lastly, we sketch how to categorify a Theorem by Ardila and Sanchez, which states that the convolution of two valuative invariants (respectively, valuative functors) is again valuative.

 

This is based on a joint ongoing project with Ben Elias, Dane Miyata and Nicholas Proudfoot.

Time and place: , University of Oslo, Vilhelm Bjerknes Hus, Auditorium 1

Oslo Stability and Enumerative Geometry Workshop 2023

Time and place: , NHA B1120

We prove that (logarithmic, Nygaard completed) prismatic and (logarithmic) syntomic cohomology are representable in the category of logarithmic motives. As an application, we immediately obtain Gysin maps for prismatic and syntomic cohomology, and we precisely identify their cofibers. In the second part of the talk we develop a descent technique that we call saturated descent, inspired by the work of Niziol on log K-theory. Using this, we prove crystalline comparison theorems for log prismatic cohomology, log Segal conjectures and log analogues of the Breuil-Kisin prismatic cohomology, from which we get Gysin maps for the Ainf cohomology.

Time and place: , NHA B1120

I will discuss the “geometric method” for syzygies and discuss applications to the study of tautological bundles of linear spaces. From this, I will explain how to pass from realizable matroids to all matroids via initial degenerations. This is joint work in progress with Alex Fink and Chris Eur.

Time and place: , NHA B1020

A finite graph determines a Kirchhoff polynomial, which is a squarefree, homogeneous polynomial in a set of variables indexed by the edges. The Kirchhoff polynomial appears in an integrand in the study of particle interactions in high-energy physics, and this provides some incentive to study the motives and periods arising from the projective hypersurface cut out by such a polynomial.

From the geometric perspective, work of Bloch, Esnault and Kreimer (2006) suggested that the most natural object of study is a polynomial determined by a linear matroid realization, for which the Kirchhoff polynomial is a special case.

I will describe some ongoing joint work with Delphine Pol, Mathias Schulze, and Uli Walther on the interplay between geometry and matroid combinatorics for this family of objects.

Time and place: , NHA B1120
In this talk, I explain how we explicitly construct a motivic analog of the fundamental group of the circle. We construct a group structure on the set of pointed naive homotopy classes of maps from the Jouanolou device to the projective line. The group operation is defined via matrix multiplication on generating sections of line bundles and only requires basic algebraic geometry. In particular, it is completely independent of the construction of the motivic homotopy category. Based on joint work with William Hornslien, Gereon Quick, and Glen Matthew Wilson.
Time and place: , NHA B1120

Many have tried to adapt Clemens and Griffiths's approach to irrationality of cubic threefolds to higher dimensions, using different invariants in place of H^3(X,Z): the transcendental part of H^4, derived categories, quantum cohomology... I will report on my attempt to use higher algebraic K-theory, which turns out to be strictly weaker than what Voisin and Colliot-Thélène have already gotten from Bloch-Ogus theory, but (I think) in an interesting way. For a positive result, I can show that the higher K-theory of Kuznetsov's K3 category for a cubic or Gushel-Mukai 4-fold looks the same as that of an honest K3 surface.

Time and place: , NHA B1120
Hilbert schemes of points on a smooth projective curve are simply symmetric powers of the curve itself; they are smooth and we know essentially everything about them. We propose a variation by studying double nested Hilbert schemes of points, which parametrize flags of 0-dimensional subschemes satisfying certain nesting conditions dictated by Young diagrams. These moduli spaces are almost never smooth but admit a virtual structure à la Behrend-Fantechi. We explain how this virtual structure plays a key role in (re)proving the correspondence between Gromov-Witten invariants and stable pair invariants for local curves, and say something on their K-theoretic refinement.
Time and place: , NHA B1120
Donaldson-Thomas theory is a well-celebrated modern tool for studying Calabi-Yau threefolds. In this theory, one studies weighted Euler characteristics of moduli spaces of sheaves on threefolds. Elliptic genus on the other hand is a refinement of Euler characteristic motivated by a hypothesis of Witten. In this talk I will discuss and present evidence of a surprising relationship between the two. That is, a relationship between the Elliptic genus of sheaves surfaces and the Donaldson-Thomas theory of elliptically fibred threefolds.
Time and place: , NHA B1120

I will talk about some new examples of varieties where the coniveau and strong coniveau filtrations are different. This is joint work with Jørgen Vold Rennemo.

Time and place: , NHA B1120

Fano manifolds are complex projective manifolds having positive first Chern class. The positivity condition on the first Chern class has far reaching geometric and arithmetic implications. For instance, Fano manifolds are covered by rational curves, and families of Fano manifolds over one dimensional bases always admit holomorphic sections. In recent years, there has been some effort towards defining suitable higher analogues of the Fano condition. Higher Fano manifolds are expected to enjoy stronger versions of several of the nice properties of Fano manifolds.

In this talk, I will discuss higher Fano manifolds which are defined in terms of positivity of higher Chern characters. After a brief survey of what is currently known, I will present recent joint work with Carolina Araujo, Roya Beheshti, Kelly Jabbusch, Svetlana Makarova, Enrica Mazzon and Nivedita Viswanathan, regarding toric higher Fano manifolds. I will explain a strategy towards proving that projective spaces are the only higher Fano manifolds among smooth projective toric varieties.

Time and place: , NHA B1119
Enriched enumerative geometry is a new area in which we take results in enumerative geometry over the complex numbers and refine them to give results over any base field. The "refinements" in question recover the classical results over algebraically closed fields but may also include arithmetic information about the base field. In this talk, I'll give an overview of a proof of an enriched refinement of the Yau-Zaslow formula for counting rational curves on K3 surfaces. Joint work with Jesse Pajwani.
Time and place: , NHA B1020

Nakajima quiver varieties are a class of combinatorially defined moduli spaces generalising the Hilbert scheme of points in the plane, defined with the aid of a quiver Q (directed graph) and a fixed framing dimension vector f. In the 90s Nakajima used the cohomology of these varieties (in fixed cohomological degrees, and for fixed f) to construct irreducible lowest weight representations of the Kac-Moody Lie algebras associated to the underlying graph of Q. Since the action is via geometric correspondences, the entire cohomology of these quiver varieties forms a module for the same Kac-Moody Lie algebras, suggesting the question: what is the decomposition of the entire cohomology into irreducible lowest weight representations?

In this talk I will explain that this question is somehow not the right one. I will introduce the BPS Lie algebra associated to Q, a generalised Kac-Moody Lie algebra associated to Q, which contains the usual one as its cohomological degree zero piece. The entire cohomology of the sum of Nakajima quiver varieties for fixed Q and f turns out to have an elegant decomposition into irreducible lowest weight modules for this Lie algebra, with lowest weight spaces isomorphic to the intersection cohomology of certain singular Nakajima quiver varieties. This is joint work with Lucien Hennecart and Sebastian Schlegel Mejia.