Christos Dimitrakakis

Professor - Programming
Image of Christos Dimitrakakis
Norwegian version of this page
Username
Visiting address Gaustadalléen 23B 0373 Oslo
Postal address Postboks 1080 0316 Oslo

Research interests

  • Artificial intelligence and society
  • Differential privacy
  • Reinforcement learning

Teaching

Autumn semester: IN-STK5000Adaptive methods for data-based decision making, which is a course on:

  • Graphical models and Bayesian inference
  • Decision theory
  • Reproducibility in data-driven science
  • Privacy
  • Fairness
  • Causality
  • Adaptive experiment design
  • Markov decision processes (introductory)

Spring semester: IN-STK5100,  Reinforcement learning and decision making under uncertainty, which is a course on 

  • Decision theory
  • Concentration inequalities and PAC theory
  • Bandit theory
  • Markov decision process theory
  • Reinforcement learning
  • Stochastic approximation
  • Regret bounds
Tags: reinforcement learning, machine learning, differential privacy, fairness, decision making under uncertainty, artificial intelligence, adversarial machine learning, Bayesian inference, autonomous vehicles, recommendation systems

Publications

  • Dimitrakakis, Christos; Liu, Yang; Parkes, David C. & Radanovic, Goran (2019). Bayesian fairness, In  Proceedings of the AAAI Conference on Artificial Intelligence.  AAAI Press.  ISBN 978-1-57735-809-1.  KAPITTEL.
  • Ekström, Andreas; Forssen, Christian; Dimitrakakis, Christos; Dubhashi, Devdatt; Johansson, H. T.; Salomonsson, Hans & Schliep, Alexander (2019). Bayesian optimization in ab initio nuclear physics. Journal of Physics G: Nuclear and Particle Physics.  ISSN 0954-3899.  46(9) . doi: 10.1088/1361-6471/ab2b14
  • Dimitrakakis, Christos; Nelson, Blaine; Zhang, Zuhe; Mitrokotsa, Aikateirni & Rubinstein, Benjamin I.P. (2017). Differential privacy for Bayesian inference through posterior sampling. Journal of machine learning research.  ISSN 1532-4435.  18(1)
  • Dimitrakakis, Christos (2020). Differential privacy in energy systems.
  • Eriksson, Hannes & Dimitrakakis, Christos (2020). Epistemic Risk-Sensitive Reinforcement Learning.
  • Grover, Divya; Basu, Debabrota & Dimitrakakis, Christos (2020). Bayesian Reinforcement Learning via Deep, Sparse Sampling.
  • Jorge, Emilio; Eriksson, Hannes; Dimitrakakis, Christos; Basu, Debabrota & Grover, Divya (2020). Inferential Induction: A Novel Framework for Bayesian Reinforcement Learning.
  • Tossou, Aristide; Dimitrakakis, Christos; Rzepecki, Jaroslaw & Hofmann, Katja (2020). A Novel Individually Rational Objective In Multi-Agent Multi-Armed Bandits: Algorithms and Regret Bounds.
  • Boroujeni, Mahrokh Ghoddousi; Fay, Dominik; Dimitrakakis, Christos & Kamgarpour, Maryam (2019). Privacy of Real-Time Pricing in Smart Grid.
  • Dimitrakakis, Christos; Liu, Yang; Parkes, David C. & Radanovic, Goran (2019). Bayesian fairness.
  • Dimitrakakis, Christos; Parkes, David C.; Radanovic, Goran & Tylkin, Paul (2017). Multi-View Decision Processes: The Helper-AI Problem.
Published Nov. 8, 2018 11:09 AM - Last modified Nov. 28, 2020 10:34 PM