Norwegian version of this page

ADAPT

 

Scalability and parallelism can reduce software performance when tasks interact with data, for example when tasks access remote data or tasks modify shared data. This motivate the aim of the ADAPT project: to improve data processing, by systematically extracting data-access patterns from applications and by matching and customize task scheduling and data allocation using such patterns.

About the project

The ADAPT project will introduce a formal notion of data-access patterns that describes abstractly how computation interacts with memory. ADAPT combines formal models of parallel systems with basic research in programming language theory, with the aim of developing novel techniques to improve data locality and demonstrating their applicability by means of experimental proof of concept.

Image may contain: text, font, line.

Objectives

The main goal of the project is "to study how to systematically explore applications with parallel data processing to (1) extract information related to how tasks interact with data in memory, and (2) use this information to coordinate data allocation and task scheduling”.

Outcomes

The ADAPT project will develop a formal theory that captures abstractly the interaction of workflows with dynamically created tasks and memory locations on parallel computers. This theory will form the basis to combine formal analysis with model-based simulations, using data-access patterns, to control schedulers and allocators for a specific application. The approach will be validated with a proof of concept tool applied to a case study based on a real application.

Background

ADAPT’s research agenda is based on two hypotheses. First, application-specific data management, combining data scheduling and task allocation, can improve the performance of highly parallelised applications that access large amounts of data.  Second, that abstractions, formal foundations, and executable modelling together enable model-based static analysis techniques that can predict runtime data access with sufficient precision to improve data management for a particular application. Therefore, the project will study how to systematically infer these patterns for a particular parallel application before execution, and how to use them later to monitor and control data distribution and data movement of the application while it is running. This will allow better data allocation and task scheduling and could  avoid performance degradation.

Financing

ADAPT: Exploiting Abstract Data-Access Patterns for Better Data Locality in Parallel Processing

The Research Council of Norway - FRINATEK - Young Research Talent

Cooperation

- CWI’s Foundations of Software Engineering group, Amsterdam.

- Dept. of Computing, Imperial College London.

- Dept. of Computer Science, University of Oxford.

- Numascale, Norway.

Tools

Publications

  • Shiji Bijo; Einar Broch Johnsen; Ka I Pun & Silvia Lizeth Tapia Tarifa (2019). A formal model of data access for multicore architectures with multilevel caches. Science of Computer Programming.  ISSN 0167-6423.  179, s 24- 53
  • Nikolaos Bezirgiannis; Frank de Boer; Einar Broch Johnsen; Ka I Pun & Silvia Lizeth Tapia Tarifa (2019). Implementing SOS with Active Objects: A Case Study of a Multicore Memory System. Lecture Notes in Computer Science.  ISSN 0302-9743.  11424, s 332- 350
  • Shiji Bijo; Einar Broch Johnsen; Ka I Violet Pun; Christoph Seidl & Silvia Lizeth Tapia Tarifa (2018). Deployment by Construction for Multicore Architectures, In Bernhard Steffen & Tiziana Margaria (ed.),  Leveraging Applications of Formal Methods, Verification and Validation. Modeling - 8th International Symposium, ISoLA 2018. Proceedings - Part I.  Springer.  ISBN 978-3-030-03417-7.  Scientific Article.  s 448 - 465

View all works in Cristin

Published Sep. 27, 2018 4:12 PM - Last modified July 24, 2019 3:33 PM