2022

Previous

Welcome to a new Computational Science seminar. This coming Friday, we have the pleasure of having Lars Nordbryhn, who has, since 2018, been the Norwegian focal point for IBM's Quantum Computing program. Attached there is a poster to promote the event. Feel free to share it with whomever you feel would be interested.

 

Since the format for the talk might be slightly different than usual, there is no specific title/abstract this time.

 

Nowadays, since almost anyone can post on social media, a strict distinction between source and consumer is no longer evident. As a consequence we are exposed to an exponential growing flood of misleading information produced by an uncontrollable crowd of often clueless creators. Although it is well understood that the spread of misinformation leads to fatal consequences, it seems impossible to manually sort dangerous content from the sheer volume of data published on a daily basis.

Natural language processing is widely used to automatically classify suspicious content. Here, the strategy is to create manually labeled training sets and train classifiers to detect the content of interest.

 

This week we have the pleasure of having Helga Bodahl Holmestad, Sigurd Holmsen and Øystein Høistad from SINTEF.

Helga is a senior researcher at SINTEF (with a PhD in particle physics) while Sigurd and Øystein are working on their master of science thesis with supervisors from SINTEF, using machine learning and AI.

They will talk about research and job possibilities at SINTEF (in particular summer jobs with deadline coming up soon for summer 2023, of interest to many of you) as well as topics for Master of Science projects and other job possibilities. 

Helga and Øystein will focus on machine learning applied to real life projects (in particular in connection with civil engineering and large construction plans) while Sigurd will present a project on machine learning applied to learning physical laws.


 

Physicists, computer scientists and mathematicians are increasingly joining the life sciences using their tools to help figuring out how life works.

Brain science is particularly attractive since we have a fairly good understanding of the principles for how individual nerve cells work and how they can be modelled. Now the challenge is to leverage this knowledge to help us understand how networks of thousands, millions and eventually billions of such nerve cells make us perceive, think and feel. In the seminar I will introduce the challenges, and in particular talk about how hundreds of European scientists in the EU Human Brain Project work together to address this formidable and exciting challenge which some call the "holy grail" of neuroscience.