SNP detection and SNP filtering

Discussion on two (!) papers: (i) Le & Durbin 2011 (Genome Research 21:952-960) and (ii) Roesti et al. 2012 (BMC Evolutionary Biology 21:94).

Abstracts

SNP detection and genotyping from low-coverage sequencing data on multiple diploid samples

Le & Durbin 2011

Reductions in the cost of sequencing have enabled whole-genome sequencing to identify sequence variants segregating in a population. An efficient approach is to sequence many samples at low coverage, then to combine data across samples to detect shared variants. Here, we present methods to discover and genotype single-nucleotide polymorphism (SNP) sites from low-coverage sequencing data, making use of shared haplotype (linkage disequilibrium) information. For each population, we first collect SNP candidates based on independent sequence calls per site. We then use MARGARITA with genotype or phased haplotype data from the same samples to collect 20 ancestral recombination graphs (ARGs). We refine the posterior probability of SNP candidates by considering possible mutations at internal branches of the 40 marginal ancestral trees inferred from the 20 ARGs at the left and right flanking genotype sites. Using a population genetic prior distribution on tree-branch length and Bayesian inference, we determine a posterior probability of the SNP being real and also the most probable phased genotype call for each individual. We present experiments on both simulation data and real data from the 1000 Genomes Project to prove the applicability of the methods. We also explore the relative tradeoff between sequencing depth and the number of sequenced samples.

 

Uninformative polymorphisms bias genome scans for signatures of selection

Roesti et al. 2012

Background

With the establishment of high-throughput sequencing technologies and new methods for rapid and extensive single nucleotide (SNP) discovery, marker-based genome scans in search of signatures of divergent selection between populations occupying ecologically distinct environments are becoming increasingly popular.

Methods and Results

On the basis of genome-wide SNP marker data generated by RAD sequencing of lake and stream stickleback populations, we show that the outcome of such studies can be systematically biased if markers with a low minor allele frequency are included in the analysis. The reason is that these ‘uninformative’ polymorphisms lack the adequate potential to capture signatures of drift and hitchhiking, the focal processes in ecological genome scans. Bias associated with uninformative polymorphisms is not eliminated by just avoiding technical artifacts in the data (PCR and sequencing errors), as a high proportion of SNPs with a low minor allele frequency is a general biological feature of natural populations.

Conclusions

We suggest that uninformative markers should be excluded from genome scans based on empirical criteria derived from careful inspection of the data, and that these criteria should be reported explicitly. Together, this should increase the quality and comparability of genome scans, and hence promote our understanding of the processes driving genomic differentiation.

 

 

Published Mar. 3, 2013 1:17 PM - Last modified Mar. 7, 2013 3:09 PM