REEF: Productivity and Resilience Enhancement of Exploited Fish stocks: an experimental approach

About the project

Worldwide, many fish stocks are in a state of serious decline or collapse. Additionally, collapsed stocks often fail to recover, even when the fishing effort is relaxed. This chronic overexploitation incurs severe economic costs and have ramifications to ecosystem function and services.

We argue that many of these problems arise because of an opposition between fisheries-induced selection, that targets fast-growing and large-sized individuals through the use of minimum-size limits, and natural selection that favours the same individuals.

Instead, fisheries should act in concert with natural selection by selectively harvesting small-sized individuals through the use of maximum size limits. We predict that such a reverse-fishing regime should increase both the productivity and resilience of exploited stocks.

To test this general hypothesis, REEF proposes to use an experimental approach to specifically explore

(i) how the classical vs. reversed fishing regimes drive changes in phenotypes and in the underlying molecular architectures that support trait evolvability,

(ii) quantify whether and how phenotypic and molecular evolution caused by fishing have cascading effects into the food-web down to algae and, from there, on water quality
and the carbon biological pump,

(iii) whether and how fishing may change natural selection acting on exploited fish stocks.

If successful, reverse fishing regulations will ultimately foster progress towards a restoration of marine ecosystems to their historical state, when top predators were larger and more
numerous than today.


This Project is funded by the Research Council of Norway (RCN) (MARINFORSK)

RCN Project Number: 255601  (Project data bank at RCN)

UiO Project Number: 190709


01.09.2016 - 28.02.2021


Published Feb. 4, 2021 2:55 PM - Last modified Feb. 10, 2021 10:48 AM