UiO MiNaLab – Micro and Nanotechnology Laboratory

UiO MiNaLab is one of four cleanrooms within the national infrastructure NorFab – The Norwegian Micro- and Nanofabrication Facility, supporting and enabling research and innovation within micro- and nanotechnology.

UiO MiNaLab offers open laboratory access for fabrication, characterization and collaborative research to all students and scientists at the University of Oslo, to the broader (public) research community in Norway and the EU, as well as industry and start-up professionals.

UiO MiNaLab has a 440 sq. m cleanroom with a ISO5 classification and several characterization laboratories. The infrastructure is targeted towards flexibility and provides equipment for the synthesis, modification and characterization of various material systems, such as semiconductors, metals, etc. The facility is operated by the Semiconductor physics group at the Department of Physics, the University of Oslo.


  • E.M. Baba, P.M. Weiser, E.Ö. Zayim, and S. Karazhanov. Temperature-dependent photochromic performance of yttrium oxyhydride thin films. Phys. Status Solidi RRL 15, 2000459 (2021).
  • J. Bonkerud, C. Zimmermann, F. Herklotz, P.M. Weiser, C. Seiffert, E.F. Verhoeven, L. Vines, and E. Monakhov. Electrically-active defects in reduced and hydrogenated rutile TiO2. Semicond. Sci. Technol. 36, 014006 (2021).
  • A. Kaźmierczak-Bałata, L. Grzadziel, M. Guziewicz, V. Venkatachalapathy, A. Kuznetsov, and M. Krzywiecki. Correlations of thermal properties with grain structure, morphology, and defect balance in nanoscale polycrystalline ZnO films. Applied Surface Science 546, 149095 (2021).
  • E.S. Köksal, I. Põldsalu, H. Friis, S. Mojzsis, M. Bizzarro, I. Gözen. Spontaneous formation of prebiotic compartment colonies on Hadean Earth and pre-Noachian Mars. BioRxiv (2021)
  • J. Mayandi, R.K. Madathil, C. Abinaya, K. Bethke, V. Venkatachalapathy, K. Rademann, T.E. Norby, and T. Finstad. Al-doped ZnO prepared by co-precipitation method and its thermoelectric characteristics. Materials Letters 288, 129352 (2021).
  • I. Poldsalu, E.S. Köksal, I. Gözen. Mixed fatty acid-phospholipid protocell networks. BioRxiv (2021)
  • K. Spustova, E.S. Köksal, A. Ainla, and I. Gözen. Subcompartmentalization and pseudo-division of model protocells. Small 17, 2005320 (2021).



  • T. Aarholt, Y.K. Frodason, and Ø. Prytz. Imaging defect complexes in scanning transmission electron microscopy: Impact of depth, structural relaxation, and temperature investigated by simulations. Ultramicroscopy 209, 112884 (2020).
  • S. Abad, G.C. Vasquez, L. Vines, and R. Ranchal. Use of Ga2O3[1 0 0] monocrystals as substrates for the synthesis of GaFeO3 thin films. Materials Letters 261, 126949 (2020).
  • C.  Abinaya, K. Bethke, V. Andrei, J. Baumann, B. Pollakowski-Herrmann, B. Kanngießer, B. Beckhoff, G.C. Vasquez, J. Mayandi, T. Finstad, and K. Rademann. The effect of post-deposition annealing conditions on structural and thermoelectric properties of sputtered copper oxide films. RSC Adv 10, 29394-29401 (2020).  
  • M.E. Bathen, A. Galeckas, J. Coutinho, and L. Vines. Influence of hydrogen implantation on emission from the silicon vacancy in 4H-SiC. Journal of Applied Physics 127, 085701 (2020).
  • M.E. Bathen, M. Linnarsson, M. Ghezellou, J. Ul Hassan, and L. Vines. Influence of carbon cap on self-diffusion in silicon carbide. Crystals 10(9), 752 (2020).
  • M.E. Bathen, L. Vines, and J. Coutinho. First-principles calculations of Stark shifts of electronic transitions for defects in semiconductors: the Si vacancy in 4H-SiC. J. Phys.: Condens. Matter 33, 075502 (2020)
  •  J. Bonkerud, C. Zimmermann, P.M. Weiser, T. Aarholt, E.F. Verhoeven, L. Vines, E. Monakhov, and F. Herklotz. Fabrication and characterization of Schottky barrier diodes on rutile TiO2. Mater. Res. Express 7, 065903 (2020).
  • J. Borgersen, L. Vines, Y.K. Frodason, A. Kuznetsov, H. von Wenckstern, M. Grundmann, M. Allen, J. Zúñiga-Pérez, and K.M. Johansen. Experimental exploration of the amphoteric defect model by cryogenic ion irradiation of a range of wide band gap oxide materials. J. Phys.: Condens. Matter 32, 505701 (2020).
  • K. Bazioti, V.S. Olsen, A. Kuznetsov, L. Vines, and Ø. Prytz. Formation of N2 bubbles along grain boundaries in (ZnO)1−x(GaN)x: nanoscale STEM-EELS studies. Phys. Chem. Chem. Phys 22, 3779-3783 (2020).
  • Y.K. Frodason, K. M. Johansen, L. Vines, and J. B. Varley. Self-trapped hole and impurity-related broad luminescence in β-Ga2O3. Journal of Applied Physics 127, 075701 (2020).
  • D. Gogova-Petrova, V.S. Olsen, K. Bazioti, I.-H. Lee, Ø. Prytz, L. Vines, and A. Kuznetsov. High electron mobility single-crystalline ZnSnN2 on ZnO (0001) substrates. CrystEngComm 22, 6268-6274 (2020).
  • S. Grini, H. Aboulfadl, N. Ross, C. Persson, C. Platzer-Björkman, M. Thuvander, and L. Vines, Lasse. Dynamic impurity redistributions in Kesterite absorbers. Phys. Status Solidi B 257, 2000062 (2020).
  • R.M. Karsthof, M.E. Bathen, A. Galeckas, and L. Vines. Conversion pathways of primary defects by annealing in proton-irradiated n-type 4H-SiC. Phys. Rev. B 102, 184111 (2020)
  • R. Kumar, K. Bergum, H.N. Riise, E. Monakhov, A. Galeckas, and B.G. Svensson. Impact of post annealing and hydrogen implantation on functional properties of Cu2O thin films for photovoltaic applications. Journal of Alloys and Compounds 825, 153982 (2020).
  • J.N. Kvalvik, J. Borgersen, P.-A.Hansen, and O. Nilsen. Area-selective atomic layer deposition of molybdenum oxide. Journal of Vacuum Science & Technology A 38, 052408 (2020).
  • J. Mayandi, T. Finstad, R. Venkatesan, P. Vajeeston, S. Karazhanov, and V. Venkatachalapathy. Carbon-dioxide as annealing atmosphere to retain the electrical properties of indium-tin oxide. Materials Letters 276, 128195 (2020).
  • J. Müting, V. Bobal, T. Neset Sky, L. Vines, and U. Grossner. Lateral straggling of implanted aluminum in 4H-SiC. Appl. Phys. Lett 116, 012101 (2020)
  • V.M. Reinertsen, P.M. Weiser, Y.K. Frodason, M.E. Bathen, L. Vines, and K.M. Johansen. Anisotropic and trap-limited diffusion of hydrogen/deuterium in monoclinic gallium oxide single crystals. Appl. Phys. Lett 117, 232106 (2020).
  • G.C. Vasquez, M.E. Bathen, A. Galeckas, K. Bazioti, K.M. Johansen, D. Maestre, A. Cremades, Ø. Prytz, A.M. Moe, A. Kuznetsov, and L. Vines. Strain modulation of Si vacancy emission from SiC micro- and nanoparticles. Nano Lett 20, 8689-8695 (2020).
  • G.C. Vasquez, K.M. Johansen, A. Galeckas, L. Vines, and B.G. Svensson. Optical signatures of single ion tracks in ZnO. Nanoscale Adv 2, 724-733 (2020).
  • P.M. Weiser, E. Monakhov, H. Haug, M.S. Wiig, and R. Søndenå. Hydrogen-related defects measured by infrared spectroscopy in multicrystalline silicon wafers throughout an illuminated annealing process. Journal of Applied Physics 127, 065703 (2020).
  • J. Woerle, M.E. Bathen, T. Prokscha, A. Galeckas, H.M.Ayedh, L. Vines, and U. Grossner. Muon interaction with negative-U and high-spin-state defects: Differentiating between C and Si vacancies in 4H-SiC. Phys. Rev. Applied 14, 054053 (2020).
  • C. Zimmermann, Y.K. Frodason, A.W. Barnard, J.B. Varley, K. Irmscher, Z. Galazka, A. Karjalainen, W.E. Meyer, F.D. Auret, and L. Vines. Ti- and Fe-related charge transition levels in beta-Ga2O3. Appl. Phys. Lett 116, 072101 (2020).
  • C. Zimmermann, Y.K. Frodason, V. Rønning, J.B. Varley, and L. Vines. Combining steady-state photo-capacitance spectra with first-principles calculations: the case of Fe and Ti in β-Ga2O3. New J. Phys 22, 063033 (2020).
  • C. Zimmermann,V. Rønning, Y.K. Frodason, V. Bobal, L. Vines, and J.B. Varley. Primary intrinsic defects and their charge transition levels in beta-Ga2O3. Phys. Rev. Materials 4, 074605 (2020)
  • C. Zimmermann, E.F. Verhoeven, Y.K. Frodason, P.M. Weiser, J.B. Varley, and L. Vines. Formation and control of the E2* center in implanted b-Ga2O3 by reverse-bias and zero-bias annealing. J. Phys. D: Appl. Phys 53, 464001 (2020).


UiO MiNaLab is a partner in the national infrastructure NORFAB – The Norwegian Micro- and Nanofabrication Facility, together with NTNU NanoLab, USN MST Lab and SINTEF MiNaLab.

UiO MiNaLab is also a part of NNN – The Nordic Nanolab Network and Euronanolab – The European Nanolab Network.




UiO MiNaLab is funded by The Research Council of Norway and The University of Oslo.