Lars Kristiansen
Professor
-
Programming
Adjunct Professor - Department of Mathematics

Norwegian version of this page
Email
larsk@math.uio.no
Mobile phone
+4792210527
+47 922 10 527
Username
Visiting address
Niels Henrik Abels hus
Moltke Moes vei 35
0851 OSLO
Postal address
Postboks 1053 Blindern
0316 Oslo
Below you find a list over my current research interests together with some selected papers.
Weak First-Order Theories (selected papers):
- Kristiansen, L. & Murwanashyaka, J.: First-Order Concatenation Theory with Bounded Quantifiers. Archive for Mathematical Logic (2020). doi: 10.1007/s00153-020-00735-6
- Kristiansen, L. & Murwanashyaka, J.: On Interpretability Between some Weak Essentially Undecidable Theories. LNCS (2020). doi: 10.1007/978-3-030-51466-2_6
You can read more about first-order theories in Wikipedia.
Computable Analysis (selected papers):
- Georgiev, I., Kristiansen, L. & Stephan, F.: Computable Irrational Numbers with Representations of Surprising Complexity. Annals of Pure and Applied Logic (2020). doi: 10.1016/j.apal.2020.102893 Preprint.
- Kristiansen, L.: On Subrecursive Representability of Irrational Numbers, Part II. Computability (2018) . doi: 10.3233/COM-170081
- Kristiansen, L.: On Subrecursive Representability of Irrational Numbers. Computability (2017). doi: 10.3233/COM-160063
You can read more about computable analysis in Wikipedia.
Subrecursive Degree Theory (selected papers):
- Kristiansen, L., Schlage-Puchta, J. & Weiermann, A: Streamlined Subrecursive Degree Theory. Annals of Pure and Applied Logic (2012). doi: 10.1016/j.apal.2011.11.004
- Kristiansen, L.: A Jump Operator on Honest Subrecursive Degrees. Archive for Mathematical Logic (1998). doi: 10.1007/s001530050086
You cannot read more about subrecursive degree theory in Wikipedia. But you can read about the Grzegorczyk hierarchy. Subrecursive degrees are in some sense a generalization of the Grzegorczyk hierarchy.
Implicit Computational Complexity and related stuff (selected papers):
- Kristiansen, L.: Reversible Programming Languages Capturing Complexity Classes. LNCS (2020) doi: 10.1007/978-3-030-52482-1_6
- Kristiansen, L., Ben-Amram, A. & Jones, N. D.: Linear, Polynomial or Exponential? Complexity Inference in Polynomial Time. LNCS (2008). See here
- Kristiansen, L.: Neat function Algebraic Characterizations of LOGSPACE and LINSPACE. Computational Complexity (2005). doi: 10.1007/s00037-005-0191-0
- Kristiansen, L. & Niggl, K.-H.: On the Computational Complexity of Imperative Programming Languages. Theoretical Computer Science (2004). doi: 10.1016/j.tcs.2003.10.016
You can read more about implicit computational complexity in Wikipedia.
|
---|
Publications
- Georgiev, Ivan; Kristiansen, Lars & Stephan, Frank (2020). Computable Irrational Numbers with Representations of Surprising Complexity. Annals of Pure and Applied Logic. ISSN 0168-0072. . doi: 10.1016/j.apal.2020.102893 Full text in Research Archive.
- Kristiansen, Lars (2020). Reversible programming languages capturing complexity classes.. Lecture Notes in Computer Science (LNCS). ISSN 0302-9743. 12227, s 111- 127 . doi: 10.1007/978-3-030-52482-1_6 Full text in Research Archive.
- Kristiansen, Lars & Murwanashyaka, Juvenal (2020). First-Order Concatenation Theory with Bounded Quantifiers. Archive for Mathematical Logic. ISSN 0933-5846. 60(1-2), s 77- 104 . doi: 10.1007/s00153-020-00735-6 Full text in Research Archive.
- Kristiansen, Lars & Murwanashyaka, Juvenal (2020). First-Order Concatenation Theory with Bounded Quantifiers (Preprint). arXiv.org. ISSN 2331-8422. . doi: 10.1007/s00153-020-00735-6
- Kristiansen, Lars & Murwanashyaka, Juvenal (2020). On Interpretability Between Some Weak Essentially Undecidable Theories. Lecture Notes in Computer Science (LNCS). ISSN 0302-9743. 12098, s 63- 74 . doi: 10.1007/978-3-030-51466-2_6
- Kristiansen, Lars & Murwanashyaka, Juvenal (2020). On Interpretability between some weak essential undecidable theories. Lecture Notes in Computer Science (LNCS). ISSN 0302-9743. 12098, s 63- 74 . doi: 10.1007/978-3-030-51466-2_6 Full text in Research Archive.
- Kristiansen, Lars & Simonsen, Jakob Grue (2020). On the Complexity of Conversion Between Classic Real Number Representations. Lecture Notes in Computer Science (LNCS). ISSN 0302-9743. 12098, s 75- 86 . doi: 10.1007/978-3-030-51466-2_7
- Aanderaa, Stål; Kristiansen, Lars & Ruud, Hans-Kristian (2018). Search for Good Examples of Hall's Conjecture. Mathematics of Computation. ISSN 0025-5718. 87(314), s 2903- 2914 . doi: 10.1090/mcom/3298 Full text in Research Archive.
- Georgiev, Ivan; Kristiansen, Lars & Stephan, Frank (2018). On General Sum Approximations of Irrational Numbers, In Florin Manea; Russel G. Miller & Dirk Nowotka (ed.), Sailing Routes in the World of Computation. Springer Nature. ISBN 978-3-319-94417-3. kapittel. s 194 - 203
- Georgiev, Ivan; Kristiansen, Lars & Stephan, Frank (2018). Subrecursive Approximations of Irrational Numbers by Variable Base Sums. arXiv.org. ISSN 2331-8422.
- Kristiansen, Lars (2018). On subrecursive representability of irrational numbers, part II. Computability - The Journal of the Assosiation. ISSN 2211-3568. 8(1), s 43- 65 . doi: 10.3233/COM-170081 Full text in Research Archive.
- Kristiansen, Lars & Murwanashyaka, Juvenal (2018). Decidable and Undecidable Fragments of First-Order Concatenation Theory, In Florin Manea; Russel G. Miller & Dirk Nowotka (ed.), Sailing Routes in the World of Computation. Springer Nature. ISBN 978-3-319-94417-3. kapittel. s 244 - 253
- Kristiansen, Lars (2020). Reversible Programming Languages Capturing Complexity Classes.
- Kristiansen, Lars (2020). On Interpretability Between some Weak Essentially Undecidable Theories.
- Kristiansen, Lars (2019). Best Approximations, Contractions Maps and Continued Fractions.
- Kristiansen, Lars (2019). On Subrecursive Representability of Irrational Numbers: Continued Fractions and Contraction maps..
- Kristiansen, Lars (2018). Decidable and Undecidable Fragments of First-Order Concatenation Theory..
- Kristiansen, Lars (2018). First-order concatenation vs. first-order number theory..
- Kristiansen, Lars (2018). On General Sum Approximations of Irrational Numbers..
- Kristiansen, Lars (2018). On b-adic Representations of Irrational Numbers..
Published Oct. 16, 2013 12:09 PM
- Last modified Oct. 10, 2020 4:39 PM