Disputation: Jon Austad

Msc. Jon Austad at the Department of Chemistry, Faculty of Mathematics and Natural Sciences, is defending the thesis «Theoretical Investigations of Molecular Electronic Structure in a Magnetic Field » for the degree of Philosophiae Doctor.

Bilde av kandidaten.

Semi - Digital Disputation

Due to the pandemic and the worldwide travel restrictions, the Disputation will be held semi - digital. An Audience is welcome to attend the Trial lecture and Disputation (physical attendance) in the Department after registering below. There is a limited seating capacity and the registration will be closed with no further notice, when the capacity limit has been reached. Only those who sign up are allowed physical attendance. 

The Disputation will be live streamed for everyone else.
The livestream will be activated 15 minutes before the Defence starts.

NB! Ex Auditorio questions can only be asked by Audience present in the Auditorium. 

Order the Dissertation as PDF from this email address with the name of the Candidate: a.c.gartner@kjemi.uio.no
Printed Dissertations will be available in Auditorium 1.

Registration for local attendance


Trial lecture

18th. of Sept. 10:30 AM, Department of Chemistry, Auditorium 2.

« How do we calculate accurate vibrational frequencies for small molecules? » 

The livestream of the lecture  will be activated 15 minutes before the  Trial lecture starts.

Conferral summary

Doktorgradsavhandlingen overordnede mål var å fremme forståelse av kvantekjemi i sterke magnetfelt.  Eksakte funksjonaler har blitt brukt til å undersøke magnetfeltavhengig tetthetsfunksjonalteori og kalibrere kvaliteteten på approksimative funksjonaler. Undersøkelser av elektronstrukturene og interaksjoner mellom heliumatomer i ekstreme magnefelt viser en rik og hittil ubeskrevet kjemi der ulike bindende edelgassmolekyler eksisterer i bestemte retninger til feltet. Svært omfattende beregninger av clustere av vannmolekyler viser at deres kjemiske egenskaper ikke blir påvirket av eksperimentelt tilgjengelige magnetfelt.

Main research findings

Computational quantum chemistry allows us to not only support and complement experiment, but also to make new predictions and investigate systems beyond the reach of experimental capacity. Strong magnetic fields makes both theoretical and experimental research difficult, and the area of research is full of unsolved riddles.

Three different studies are presented. One deals with the inner workings of a generalized variant of Density Functional Theory which allows the magnetic field to be directly included (BDFT), and explores in depth how various functionals handle diamagnetic, paramagnetic and aromatic molecules. It is, amongst other things shown that the properties of paramagnetic molecules are far more difficult to compute that their diamagnetic relatives. The second paper investigates the rich chemistry of the helium dimer in a strong magnetic field, and presents the many different magnetic bonding mechanisms and interactions that exists in this regime.The final paper revolves around application of highly accurate wave-function methods to determine the influence of terrestrially available magnetic fields on water. The work of this thesis presents important contributions to theoretical chemistry in the presence of magnetic fields.



Published Sep. 18, 2020 10:08 AM - Last modified Dec. 3, 2020 2:13 PM