Norwegian version of this page

Photovoltaic-assisted hydrogen generation (PH2ON) (completed)

Illustration of the project with a logo

PV-assisted PEC water vapour splitting

About the project

Solar-powered water electrolysis for the production of pure hydrogen is an established technology, but the high cost due to the complexity of the system makes it difficult to compete with hydrogen produced by fossil fuels.

Integrating the solar cell with the water electrolyzer into a single, simpler, monolithic device is the way to go. PH2ON is a collaboration between the University of Oslo (UiO), which develops photo-electrolyzers, and the Institute for Energy Technology (IFE), which develops solar cells. Apart from the current technological challenges, clean water sources for hydrogen production could in some locations become a major issue in the future. For this reason, the unique PH2ON device will be able to photoelectrochemically produce hydrogen from water that is present in the atmospheric humidity and can be considered as an artificial photosynthesis process. 

The project will run for 3 years and is supported by leading international groups in the field of solar fuels with the ambition to establish a group of scientific excellence in the intersection of photoelectrochemical and photovoltaic technologies.

Financing

The project is funded by the Research Council of Norway, under the FRIPRO-FRINATEK program. Project number 288320.

Cooperation

University of Oslo

Institute of Energy Technology (IFE)

Follow PH2ON on social media

Youtube

Facebook

Twitter

 

Publications

  • Kang, Xiaolan; Reinertsen, Vilde Mari; Both, Kevin Gregor; Galeckas, Augustinas; Aarholt, Thomas & Prytz, Øystein [Show all 9 contributors for this article] (2022). Galvanic Restructuring of Exsolved Nanoparticles for Plasmonic and Electrocatalytic Energy Conversion. Small. ISSN 1613-6810. 18(29). doi: 10.1002/smll.202201106. Full text in Research Archive
  • Kang, Xiaolan; Chatzitakis, Athanasios; Aarholt, Thomas; Sun, Xinwei; Negri, Chiara & Norby, Truls (2022). Facet-engineered TiO<inf>2</inf>nanomaterials reveal the role of water-oxide interactions in surface protonic conduction. Journal of Materials Chemistry A. ISSN 2050-7488. 10(1), p. 218–227. doi: 10.1039/d1ta06075a. Full text in Research Archive
  • Liu, Xin; Risbakk, Sanne; Almeida Carvalho, Patricia; Yang, Mingyi; Backe, Paul Hoff & Bjørås, Magnar [Show all 8 contributors for this article] (2022). Immobilization of FeFe-hydrogenase on black TiO2 nanotubes as biocathodes for the hydrogen evolution reaction. Electrochemistry communications. ISSN 1388-2481. 135. doi: 10.1016/j.elecom.2022.107221. Full text in Research Archive
  • Touni, Aikaterini; Liu, Xin; Kang, Xiaolan; Papoulia, Chrysanthi; Pavlidou, Eleni & Lambropoulou, Dimitra [Show all 9 contributors for this article] (2022). Methanol Oxidation at Platinum Coated Black Titania Nanotubes and Titanium Felt Electrodes. Molecules. ISSN 1431-5157. 27(19), p. 1–15. doi: 10.3390/molecules27196382. Full text in Research Archive
  • Xu, Kaiqi; Chatzitakis, Athanasios Eleftherios; Backe, Paul Hoff; Ruan, Qiushi; Tang, Junwang & Rise, Frode [Show all 8 contributors for this article] (2021). In situ cofactor regeneration enables selective CO2 reduction in a stable and efficient enzymatic photoelectrochemical cell. Applied Catalysis B: Environmental. ISSN 0926-3373. 296. doi: 10.1016/j.apcatb.2021.120349. Full text in Research Archive
  • Kang, Xiaolan; Chaperman, Larissa; Galeckas, Augustinas; Ammar, Souad; Mammeri, Fayna & Norby, Truls [Show all 7 contributors for this article] (2021). Water Vapor Photoelectrolysis in a Solid-State Photoelectrochemical Cell with TiO2 Nanotubes Loaded with CdS and CdSe Nanoparticles. ACS Applied Materials & Interfaces. ISSN 1944-8244. 13(39), p. 46875–46885. doi: 10.1021/acsami.1c13047. Full text in Research Archive
  • Kang, Xiaolan; Berberidou, Chrysanthi; Galeckas, Augustinas; Bazioti, Kalliopi; Sagstuen, Einar & Norby, Truls Eivind [Show all 8 contributors for this article] (2021). Visible Light Driven Photocatalytic Decolorization and Disinfection of Water Employing Reduced TiO2 Nanopowders. Catalysts. ISSN 2073-4344. 11(2). doi: 10.3390/catal11020228. Full text in Research Archive
  • Zhu, Junjie; Gudmundsdottir, Jonina Björg; Strandbakke, Ragnar; Both, Kevin Gregor; Aarholt, Thomas & Almeida Carvalho, Patricia [Show all 12 contributors for this article] (2021). Double Perovskite Cobaltites Integrated in a Monolithic and Noble Metal-Free Photoelectrochemical Device for Efficient Water Splitting. ACS Applied Materials & Interfaces. ISSN 1944-8244. 13(17), p. 20313–20325. doi: 10.1021/acsami.1c01900. Full text in Research Archive
  • Touni, Aikaterini; Liu, Xin; Kang, Xiaolan; Almeida Carvalho, Patricia; Diplas, Spyridon & Both, Kevin Gregor [Show all 8 contributors for this article] (2021). Galvanic Deposition of Pt Nanoparticles on Black TiO2 Nanotubes for Hydrogen Evolving Cathodes. ChemSusChem. ISSN 1864-5631. 14(22), p. 4993–5003. doi: 10.1002/cssc.202101559. Full text in Research Archive
  • Andersen, Håkon; Xu, Kaiqi; Malyshkin, Dmitry; Strandbakke, Ragnar & Chatzitakis, Athanasios Eleftherios (2020). A highly efficient electrocatalyst based on double perovskite cobaltites with immense intrinsic catalytic activity for water oxidation. Chemical Communications. ISSN 1359-7345. 56(7), p. 1030–1033. doi: 10.1039/c9cc08765f.

View all works in Cristin

  • Kang, Xiaolan; Reinertsen, Vilde Mari; Both, Kevin Gregor; Galeckas, Augustinas; Aarholt, Thomas & Prytz, Øystein [Show all 9 contributors for this article] (2022). Galvanic Restructuring of Exsolved Nanoparticles for Plasmonic and Electrocatalytic Energy Conversion (Small 29/2022 Inside back cover feature). Small. ISSN 1613-6810. 18(29).
  • Both, Kevin Gregor; Reinertsen, Vilde Mari; Kang, Xiaolan; Neagu, Dragos; Prytz, Øystein & Norby, Truls [Show all 7 contributors for this article] (2022). Thin Film Exsolution of Metal Nanoparticles and Their Galvanic Restructuring for Plasmonically Enhanced Photocatalytic Activity.
  • Kang, Xiaolan; Chaperman, Larissa; Galeckas, Augustinas; Ammar-Merah, Souad; Mammeri, Fayna & Norby, Truls [Show all 7 contributors for this article] (2022). Water Vapor Photoelectrolysis in an All Solid-State Photoelectrochemical Cell .
  • Kang, Xiaolan; Reinertsen, Vilde Mari; Both, Kevin Gregor; Galeckas, Augustinas; Aarholt, Thomas & Prytz, Øystein [Show all 9 contributors for this article] (2022). Exsolved nanoparticles, galvanically restructured for tunable photo-electrocatalytic energy conversion.
  • Both, Kevin Gregor; Reinertsen, Vilde Mari; Kang, Xiaolan; Aarholt, Thomas; Neagu, Dragos & Prytz, Øystein [Show all 8 contributors for this article] (2022). Improved Photoelectrochemical Performance of SrTiO3 by Plasmonically Active Au Nanoparticles.
  • Chatzitakis, Athanasios; Zhu, Junjie; Gudmundsdottir, Jonina Björg; Strandbakke, Ragnar; Both, Kevin Gregor & Aarholt, Thomas [Show all 12 contributors for this article] (2022). A monolithic and noble metal-free photoelectrochemical device of minimal engineering for efficient, unassisted water splitting.
  • Chatzitakis, Athanasios (2021). Her splittes vann til hydrogen og oksygen bare ved hjelp av sollys.
  • Chatzitakis, Athanasios (2021). Solar Hydrogen Production.
  • Chaperman, Larissa; Mammeri, Fayna; Chatzitakis, Athanasios & Ammar, Souad (2021). Functionally graded, soft chemistry processed titania photoanode for water-splitting in liquid and gas phases.
  • Touni, Aikaterini; Liu, Xin; Chatzitakis, Athanasios Eleftherios; Kang, Xiaolan; Spyridou, Olga & Sotiropoulos, Sotiris (2021). Platinized Black Titania Nanotube HER Cathodes prepared by the Galvanic Deposition Method at CaH2-reduced Titania Nanotubes.
  • Chatzitakis, Athanasios Eleftherios (2019). Can we make fuel in the future from… simply air? .
  • Chatzitakis, Athanasios Eleftherios (2019). Artificial Photosynthesis: Mimicking nature for a sustainable energy future.
  • Chatzitakis, Athanasios Eleftherios (2019). Prospects of photoelectrochemical water electrolysis and the production of solar fuels.
  • Chatzitakis, Athanasios (2019). Sol + luftfuktighet = hydrogen = ren energi.

View all works in Cristin

Published Sep. 30, 2019 3:02 PM - Last modified Apr. 14, 2023 2:46 PM