Norwegian version of this page

Quantifying the role of cold season processes in vegetation-permafrost feedbacks – WINTERPROOF

Adventdalen, Svalbard, where temperatures have strongly increased in the past decade. Winters are rapidly warming across the Arctic, which has a strong impact on snow, vegetation, and permafrost. Photo: Carline Tromp

Adventdalen, Svalbard: Temperatures have strongly increased in the past decade. Winters are rapidly warming across the Arctic, which has a strong impact on snow, vegetation, and permafrost. Photo: Carline Tromp

About the project

Climate change has an amplified effect on the Arctic. The most northern part of our planet warms more than twice as fast as the rest of the world, especially in winter. Rapid winter warming impacts both permafrost and vegetation: higher temperatures will lead to the thaw of permafrost soils, while mid-winter warm spells melt away the protective snow cover which plants rely on to survive the long and harsh winters.

The cold season may contribute up to half of the yearly release of greenhouse gases from permafrost soils, and extreme winter events such as rain-on-snow or thaw-freeze events have increased in frequency. Damage from these events lowers the ability of plants to photosynthesize and remove CO2 from the atmosphere. Unfortunately, we do not know much about how these processes will develop in the future. The aim of this project is to obtain more reliable projections on how arctic winter warming may impact climate feedbacks.

Objectives

In this research project, we will add important wintertime processes that affect vegetation and permafrost to computer models. The models we currently use to predict how the arctic responds to climate change are not built to accurately simulate the winter. In warmer parts of the globe, where winters are short, this may not represent a problem, but the arctic winter can last as long as nine months. When models are only correct for one quarter of the year, they will not be able to predict how climate feedbacks from the Arctic will develop in the future.

By introducing these new processes into the models, we can make better projections of how changing arctic winters may contribute to enhanced climate feedbacks. These results can be communicated to policy makers to inform them more accurately on the consequences of climate change on the Arctic and the rest of the world.

Financing

The full name of the WINTERPROOF-project is 'Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost'.

This project is funded through the FRINATEK program of the Norwegian Research Council under grant agreement 274711. The grant is given in the category Young Research Talent.

The project period for the WINTERPROOF-project is 2018 to 2022.

Cooperation

This project and research involved is a collaboration among a number of national and international institutes:

Publications

  • Olefeldt, David; Hovemyr, Mikael; Kuhn, McKenzie A.; Bastviken, David; Bohn, Theodore J. & Connolly, John [Show all 34 contributors for this article] (2021). The Boreal–Arctic Wetland and Lake Dataset (BAWLD). Earth System Science Data. ISSN 1866-3508. 13(11), p. 5127–5149. doi: 10.5194/essd-13-5127-2021. Full text in Research Archive
  • Pongracz, Alexandra; Wårlind, David; Miller, Paul A. & Parmentier, Frans-Jan W. (2021). Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme in LPJ-GUESS. Biogeosciences. ISSN 1726-4170. 18(20), p. 5767–5787. doi: 10.5194/bg-18-5767-2021. Full text in Research Archive
  • Virkkala, Anna-Maria; Aalto, Juha; Rogers, Brendan M.; Tagesson, Torbern; Treat, Claire C. & Natali, Susan M. [Show all 49 contributors for this article] (2021). Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: regional patterns and uncertainties. Global Change Biology. ISSN 1354-1013. 27(17), p. 4040–4059. doi: 10.1111/gcb.15659. Full text in Research Archive
  • Bruhwiler, Lori; Parmentier, Frans-Jan W.; Crill, Patrick; Leonard, Mark & Palmer, Paul I. (2021). The Arctic Carbon Cycle and Its Response to Changing Climate. Current Climate Change Reports. ISSN 2198-6061. 7, p. 14–34. doi: 10.1007/s40641-020-00169-5. Full text in Research Archive
  • Parmentier, Frans-Jan W.; Nilsen, Lennart; Tømmervik, Hans & Cooper, Elisabeth J. (2021). A distributed time-lapse camera network to track vegetation phenology with high temporal detail and at varying scales. Earth System Science Data. ISSN 1866-3508. 13(7), p. 3593–3606. doi: 10.5194/essd-13-3593-2021. Full text in Research Archive
  • Chadburn, Sarah E.; Aalto, Tuula; Aurela, Mika; Baldocchi, Dennis; Biasi, Christina & Boike, Julia [Show all 25 contributors for this article] (2020). Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane Emissions. Global Biogeochemical Cycles. ISSN 0886-6236. 34( 11). doi: 10.1029/2020GB006678. Full text in Research Archive
  • Pastorello, Gilberto; Trotta, Carlo; Canfora, Eleonora; Chu, Housen; Christianson, Danielle & Cheah, You-Wei [Show all 287 contributors for this article] (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data. ISSN 2052-4463. 7. doi: 10.1038/s41597-020-0534-3. Full text in Research Archive
  • Myers-Smith, Isla H.; Kerby, Jeffrey T.; Phoenix, Gareth K.; Bjerke, Jarle W.; Epstein, Howard E. & Assmann, Jakob J. [Show all 41 contributors for this article] (2020). Complexity revealed in the greening of the Arctic. Nature Climate Change. ISSN 1758-678X. 10(2), p. 106–117. doi: 10.1038/s41558-019-0688-1. Full text in Research Archive
  • Box, Jason E.; Colgan, William T.; Christensen, Torben Røjle; Schmidt, Niels Martin; Lund, Magnus & Parmentier, Frans-Jan W. [Show all 20 contributors for this article] (2019). Key indicators of Arctic climate change: 1971–2017 . Environmental Research Letters. ISSN 1748-9326. 14(4). doi: 10.1088/1748-9326/aafc1b. Full text in Research Archive
  • Natali, Susan M.; Watts, Jennifer D.; Rogers, Brendan M.; Potter, Stefano; Ludwig, Sarah M. & Selbmann, Anne-Katrin [Show all 75 contributors for this article] (2019). Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change. ISSN 1758-678X. 9, p. 852–857. doi: 10.1038/s41558-019-0592-8. Full text in Research Archive
  • Christensen, Torben R.; Arora, Vivek K; Gauss, Michael; Hoglund-Isaksson, Lena & Parmentier, Frans-Jan W. (2019). Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Scientific Reports. ISSN 2045-2322. 9. doi: 10.1038/s41598-018-37719-9. Full text in Research Archive

View all works in Cristin

  • Parmentier, Frans-Jan W. (2021). Zombier i skogen. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2021). Helt på jordet. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2021). Ko-ko-klima! Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W.; Nilsen, Lennart; Tømmervik, Hans & Cooper, Elisabeth J. (2021). A distributed time-lapse camera network on high-arctic Svalbard to track vegetation phenology with high temporal detail and at varying scales.
  • Parmentier, Frans-Jan W. (2021). Ingen unnskyldninger. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2021). Permafrost: den sovende klimakjempen. Naturen. ISSN 0028-0887. 145(5), p. 230–235.
  • Parmentier, Frans-Jan W. (2021). Komplekst kaos. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2021). Hvit jul for Rudolf. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2020). Godt nytt for klimaet? Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2020). Tampen brenner. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Lambert, Marius Stephane Astrid; Tang, Hui; Stordal, Frode; Aas, Kjetil Schanke & Parmentier, Frans-Jan W. (2020). Causes of plant mortality from extreme winter events: model insights into desiccation processes during frost droughts.
  • Pongracz, Alexandra; Miller, Paul A.; Wårlind, David & Parmentier, Frans-Jan W. (2020). Model Simulations of Arctic Biogeochemistry and Permafrost Extent Are Sensitive to the Implemented Snow Scheme.
  • Parmentier, Frans-Jan W. (2019). Slår fast att havsstigningen accelererar. [Internet]. Forskning & Framsteg.
  • Parmentier, Frans-Jan W.; Sonnentag, Oliver; Mauritz, Marguerite; Virkkala, Anna-Maria & Schuur, Edward A.G. (2019). Is the northern permafrost zone a source or a sink for carbon? EOS. ISSN 0096-3941. 100. doi: 10.1029/2019EO130507.
  • Parmentier, Frans-Jan W.; Nilsen, Lennart; Tømmervik, Hans; Meisel, Ove H.; Bröder, Lisa M. & Vonk, Jorien E. [Show all 8 contributors for this article] (2019). Thicker Snow Cover Triggers Permafrost Carbon Loss Through Both Enhanced Warming and Surface Runoff.
  • Parmentier, Frans-Jan W. (2019). Modellplaneten. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2019). 'Doomsday vault' town warming faster than any other on Earth. [Internet]. CNN Digital.
  • Parmentier, Frans-Jan W. (2019). Apokalypse nå? Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2019). Du grønne glitrende. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Watts, Jennifer D.; Natali, Sue; Minions, Christina; Ludwig, Sarah; Rogers, Brendan M. & Risk, David [Show all 39 contributors for this article] (2019). Soil CO2 flux in the permafrost zone: New insight from a year-round chamber network in Alaska and Canada.
  • Parmentier, Frans-Jan W. (2019). Arctic greening and browning: the two-sided impact of global warming on polar ecosystems and climate feedbacks.
  • Mauritz, Marguerite; Celis, Gerardo; Commane, Roisin; Euskirchen, Eugénie S.; Goeckede, Mathias & Humphreys, Elyn [Show all 19 contributors for this article] (2019). Reconciling Historical and Contemporary Trends in Terrestrial Carbon Exchange of the High-latitude Permafrost-zone.
  • Parmentier, Frans-Jan W. (2019). Hva sier planten? Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2019). Ulven under tundraen. [Newspaper]. Klassekampen.
  • Parmentier, Frans-Jan W. (2019). Töväder mitt i vintern – ett nytt mönster i vädret kan påverka klimatförändringarna. [Newspaper]. Sydsvenskan.
  • Parmentier, Frans-Jan W. (2018). Det varme nord. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2018). Pando dør. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Natali, Sue; Watts, Jennifer; Rogers, Brendan M.; Potter, Stefano; Abbott, Benjamin & Arndt, Kyle [Show all 72 contributors for this article] (2018). A pan-arctic synthesis of nongrowing season respiration: Key drivers and responses to a changing climate .
  • Chadburn, Sarah; Fan, Yuanchao; Aalto, Tuula; Aurela, Mika; Bartsch, Annett & Boike, Julia [Show all 25 contributors for this article] (2018). Including microbial dynamics is essential for modelling Arctic methane emissions.
  • Parmentier, Frans-Jan W.; Nilsen, Lennart; Tømmervik, Hans; Meisel, Ove; Bröder, Lisa & Vonk, Jorien E. [Show all 8 contributors for this article] (2018). Thicker Snow Cover Triggers Lateral Permafrost Carbon Loss Both Through Enhanced Warming and Surface Runoff.
  • Christensen, Torben R.; Arora, Vivek K.; Gauss, Michael; Hoglund-Isaksson, Lena & Parmentier, Frans-Jan W. (2018). Arctic methane as an amplifier of global warming.

View all works in Cristin

Published Mar. 11, 2019 7:29 PM - Last modified Mar. 3, 2022 1:05 PM