Arrangementer

Tidligere

Tid og sted: 5. des. 2019 11:1512:00, NHA 919

Prof S. Balachandar, Department of Mechanical and Aerospace Engineering, University of Florida

Title Center for Compressible Multiphase Turbulence and An Improved Point-Particle Approach that Captures Fully-Resolved Physics

Tid og sted: 25. okt. 2019 11:1512:00, NHA 919

Title: The role of perception in models of movement, by Dr. Renaud Bastien, Max Planck Institute

Tid og sted: 17. sep. 2019 14:1515:00, B91

Title: Modeling the drift and radar backscatter signature of icebergs, by Ron Saper, Carleton University, Canada. 

Abstract: Icebergs are a source of wonder and mystery, and hide many mysteries that remain to be solved. In the quest to observe icebergs remotely and predict their behaviour, many difficulties are encountered and, at every turn, we find the expectations of engineers and researchers are frustrated. In this wide-ranging talk the many misconceptions and fallacies about icebergs are surveyed and analyzed, and their impact on scientific research and practice are explained and reflected upon. Examples are drawn from iceberg drift forecasting, remote sensing, and iceberg tracking studies.

Tid og sted: 30. aug. 2019 12:1513:00, B91
Tid og sted: 30. aug. 201931. aug. 2019, Tøyen hovedgård

The scope of the workshop: This international workshop brings together scientist from a wide range of fields with a special interest in bio-mechanics phenomena from cellular scale to the size of organs. Through a series of short talks the participants will present their work, where the workshop strives to stimulate scientific exchange and to initiate new collaborations.

Tid og sted: 19. juni 2019 11:1512:00, NHA 916

Colloidal particles at an interface have numerous applications to emulsion and foam stability, self-assembly and material fabrication and processing. while their dynamics involves issues of drag and diffusion, heterogeneity and interfacial pinning. Furthermore, for nanoparticles whose size may be  comparable to the width of the interface, continuum modeling may break  down. We show how molecular dynamics simulations of atomically-resolved  homogeneous and Janus nanoparticle systems can address these issues and  provide an understanding of hydrodynamic drag variation and hysteretic  phenomena in this situation.

Tid og sted: 1. mars 2019 11:1512:00, NHA 919

Title: Directional spreading of a viscous droplet on a conical fiber

Tid og sted: 11. jan. 2019 11:1512:00, NHA 919

Title: Microscale wave breaking and airflow separation in stratified two-phase pipe flow

by: Petter Vollestad, matematisk institutt, UiO.

Abstract: We perform an experimental study of stratified gas-liquid pipe flow with the aim to detect small-scale wave breaking and its influence on both the gas and liquid phase. Particle image velocimetry (PIV) is applied simultaneously in the two phases, and a criterion based on the vorticity in the crest region is used to detect microscale breaking waves. Airflow separation is frequently observed, and the study aims to investigate the correlation between small scale wave breaking and airflow separation above waves.  Results indicate that at moderate gas flow rates, microscale wave breaking has a stabilizing effect on the airflow above waves, reducing the sheltered region in the lee of the wave crest and the turbulence directly above the waves. At higher gas flow rates, no influence of wave breaking on the airflow is observed.

Tid og sted: 10. jan. 2019 11:1512:00, B 91

Title: Cement foams: yield stress and stability

Tid og sted: 7. des. 2018 11:1512:00, NHA 919
Tid og sted: 8. nov. 2018 10:1511:00, NHA 12 etg
Tid og sted: 14. sep. 2018 11:1512:00, NHA 919
Tid og sted: 7. sep. 2018 11:1512:00, NHA 919

Title: Taming nonlinear dynamics using Deep Reinforcement Learning

by: Jean Rabault, Miroslav Kuchta, Ulysse Réglade and Nicolas Cerardi

Abstract: Machine Learning (ML) methods are a promising way to perform optimal control. In a recent book ('Machine Learning Control - Taming Nonlinear Dynamics and Turbulence', Duriez et. al., 2017), several ML methods were presented as well as a couple of benchmarks. One particular benchmark is a small system of ODEs that present features, such as multimodality and cross-talks, that are representative of more complex systems found in Fluid Mechanics.

In this seminar, we present ongoing work about active control of this system of ODEs.

Tid og sted: 24. aug. 2018 11:1512:00, NHA B919
Tid og sted: 9. aug. 2018 11:1512:00, NHA 919

Christophe Henry

Post doc at Observatoire de la Cote d'Azur, Laboratoire Lagrange

Tid og sted: 14. feb. 2018 15:1516:00, End of the line, Ullevål Stadion

Soft and Wet is Different

Tid og sted: 9. jan. 2018 13:1514:00, Ullevål End of the Line

Emerging instabilities and bifurcations from deformable fluid interfaces in the inertialess regime 

In this talk, I will present two studies regarding the dynamics of droplets in the creeping flow, focusing on the arising instability and bifurcation phenomena. The first work investigates a buoyancy-driven droplet translating in a quiescent environment and the second a particle-encapsulating droplet in shear flow. There-dimensional simulations based on versatile boundary integral methods were employed to explore the intriguing instability and bifurcation phenomena in the inertialess flow. In the first work, a non-modal stability analysis was performed to predict the critical condition of instability; and in the second, a dynamic system approach was adopted to model and characterize the interacting bifurcations.

Tid: 24. nov. 2017 11:3012:00

Andreas Carlson og Jean Rabault

Nature has invented ingenious aerodynamic design solutions, some of which are critical for plants as wind dispersal of seeds and fruits is coupled to their flight performance. This formulates into an optimization problem for plants: large seed wings can lead to increased lift and more efficient dispersion, but are costly for the tree to build and can more easily be trapped in the canopy. Double winged seeds/fruits separate from their tree when a specific level of dessication is reached, and autorotate as they descend to the ground. This leads to the question: how is the wing curvature of seeds/fruits linked to their flight performance? To answer this, we develop a theoretical model that suggests the existence of an optimal wing curvature that yields maximal lift. To further understand the interplay between the flow and the wing geometry, we perform a synthetic seed adaptation by deploying 3D printing of double winged fruits that we use in flight experiments, where we span the phase space of aerial dynamics by changing the of wing curvature and seed/fruit weight. Experiments confirm that there is a sweet-spot in curvature to maximise the flight time consisted with geometrical measurements from a wide range of seeds in Nature. Our results highlights the importance of not curving too much or too little for helicopter fruits to have an optimal flight performance.

Tid: 24. nov. 2017 11:0011:30

Elisabeth Seland

In my job as research adviser, I receive a lot of questions about rights, possibilities and problems in connection with scientific publishing and open access. Both EU and the Norwegian Research Council have rules about this, and there is also a UiO policy in place that is relevant for all employees. I will give a short presentation to try to clear up what you have to, must, may, could and should related to Open access. In my experience many of you have the same questions about these issues, so I hope you bring your questions with you and we can address them in the seminar.

Tid og sted: 2. nov. 2017 10:1511:00, Gates of Eden

When and how surface structure determines the dynamics of partial wetting  

Tid og sted: 30. okt. 2017 15:1516:00, Hurricane

Sedimentation-diffusion equilibrium of Quincke rollers  

Tid og sted: 27. okt. 2017 13:0014:00, hurricane

Iceberg drift on dead water

Tid og sted: 20. okt. 2017 11:1512:00, Hurricane

Reyna Ramirez

Tid og sted: 15. sep. 2017 11:1512:00, Hurricane
Tid og sted: 12. mai 2017 11:1512:00, NHA bygget 9 etg B91

Study of the air-flow very close to the surface of wind-generated water waves Marseille large air-water facility