Norwegian version of this page

ReleQuant

ReleQuant has developed digital, research-based learning resources in general relativity and quantum physics for upper secondary physics. Practicing physics teachers as well as physics teacher students have participated in the project through ReleQuant Competence.

ReleQuant combines:

- development of digital learning resources

- research on pupils' learning processes and motivation in physics

- research on how the collaboration develops competence in the involved practitioner groups: teacher students, teachers and researchers

Logo by pupils from Lillestrøm upper secondary school (2012-2013)

About the project


ReleQuant's objectives are:

1.    to develop digital learning resources in quantum physics and general relativity that

  • are in line with the competence aims of the Norwegian upper secondary physics curriculum
  • let pupils develop their understanding of physics collaboratively by „talking physics“ and „writing physics“
  • make use of IT resources such as animations and simulations where appropriate
  • motivate by showing the relevance of modern physics for pupils' interests and for their educational and career plans
  • encourage reflections on historical and philosophical perspectives on science - for example by presenting physicists and their various interpretations of physical phenomena
  • clarify the principles that classical physics is built upon to make clear that modern physics drastically changes these underlying principles

2.    to study how learning resources function in classroom settings and to get insight into pupils’ motivation, conceptual understanding and learning processes in modern physics

3.    to create and investigate a community of practice where physics teachers, science education researchers and teacher educators, and teacher students work together on research-based development of varied and engaging teaching in physics


Digital learning resources on viten.no (platform run by the Norwegian Centre for Science Education)

The programme "Kvantefysikk" (English version: Quantum physics) was released on October 20th, 2016, after four rounds of classroom trials. A revised version in Norwegian, adapted to the new national curricular aims from 2022, was released in September 2022.

The programme "Generell relativitetsteori" was released in January 2018, also after several rounds of classroom trials.The English version "General Relativity" can be found here)

Screenshots from the ReleQuant material

The background for the ReleQuant project is:

  • scarcity of both Norwegian and international research on pupils’ understanding and learning in modern physics
  • generally less teaching experience in modern physics than in classical physics among teachers
  • the competence aims in moderne physics in the Norwegian upper secondary physics curriculum are new and rather special for Norway
  • scarcity of research-based knowledge about suitbale teaching resources to meet these competence aims

 

The competence aims in the curriculum that the ReleQuant resources are developed for, are: 

  • describe the central principles in the special and the general theory of relativity and give an account of how these have changed our understanding of time, space and fields 

  • give an account of what distinguishes quantum objects from classical objects, and describe situations where quantum phenomena can be observed 

  • (present central elements in new knowledge in physics that has resulted from international research collaboration, and evaluate how such collaborations contribute to knowledge growth)

The methodological framework that ReleQuant relies on is called Educational Design Research. Important characteristics of this framework are:

  • the aim of building a bridge between research and practical classroom application
  • the development of materials practices that work in classroom settings, in parallel with establishing evidence-based knowledge  about pupils’ learning processes
  • repeated rounds of development and testing in close collaboration with practicing teachers


In ReleQuant, this is done by

  • testing the learning resources in classrooms at the University of Oslo’s partner schools
  • developing content and new approaches for each round of testing
  • studying the use of the learning resources and pupils’ motivation and learning progress with the help of observations, video- and audio-recording, collection of pupils’ oral and written responses, as well as interviews with pupils and teachers

The first round of testing that included the first modules on quantum physics started in spring 2014. In spring 2017, the module on general relativity is tested for the third time while the finished programme in quantum physics is used for the first time.


Management and funding

The physics education group at the Department of physics, University of Oslo (UiO) manages the ReleQuant project, which is conducted in collaboration with

The project started in spring 2013, and most of the work was finished as of fall 2019. Publications continue to appear; see list below.

The project is supported financially by

  • the Research Council of Norway (ReleQuant Competence) (1/8 2015 - 31/9 2019)
  • the Olav Thon foundation (enabling physics teacher students to be part of student-active research)
  • Seed grants from Kunnskap i Skolen, an interdisciplinary research unit at UiO, and ProTed, Center for Professional Teacher Education (2013-2015)

Publications

View all works in Cristin

  • Kersting, Magdalena & Blair, David (2021). Teaching Einsteinian Physics in Schools: An Essential Guide for Teachers in Training and Practice. Routledge. ISBN 9781760877712. 450 p.

View all works in Cristin

  • Huseby, Anders & Bungum, Berit (2019). "But the electron is not alive?" - Students' challenges with the concept of observation in quantum physics.
  • Kersting, Magdalena (2019). Bringing general relativity to secondary schools: Design and evaluation of a digital learning environment.
  • Kersting, Magdalena (2019). Free Fall in Curved Spacetime.
  • Kersting, Magdalena & Bondell, Jackie (2019). MODERNISING SCIENCE TEACHING: BRINGING THE VIRTUAL UNIVERSE INTO THE CLASSROOM.
  • Huseby, Anders & Bungum, Berit (2019). Observasjon i kvantefysikk: Utfordringer for fysikkelever. (Observation in quantum physics: challenges for physics students.
  • Henriksen, Ellen Karoline (2019). Developing learning resources and investigating students' learning in general relativity and quantum physics.
  • Bøe, Maria Vetleseter (2019). High achieving students' science identity performances within STEM disciplinary cultures in Norway.
  • Bøe, Maria Vetleseter; Viefers, Susanne F; Bungum, Berit & Henriksen, Ellen Karoline (2019). Norwegian upper secondary students' ideas about the wave nature of matter.
  • Kersting, Magdalena (2019). THE TRANSFORMATIONAL POWER OF EDUCATIONAL RESEARCH COLLABORATIONS .
  • Kamphorst, Floor & Kersting, Magdalena (2019). DESIGN BASED RESEARCH AND THE MODEL OF EDUCATIONAL RECONSTRUCTION – A COMBINED APPROACH TO DESIGN SUCCESSFUL SCIENCE INSTRUCTION.
  • Frågåt, Thomas; Bøe, Maria Vetleseter & Angell, Carl (2019). Enhancing Physics Teachers’ Professional Development Using a Design-Based Research Project.
  • Kersting, Magdalena (2019). Curved Spacetime: Investigating Students' Conceptual Understanding in General Relativity.
  • Henriksen, Ellen Karoline; Viefers, Susanne F & Bøe, Maria Vetleseter (2019). Project ReleQuant: a research-based learning resource in modern physics for upper secondary school.
  • Henriksen, Ellen Karoline & Bøe, Maria Vetleseter (2019). ReleQuant physics education: Designing learning Resources and investigating student learning in general relativity and quantum physics.
  • Kersting, Magdalena (2018). General Relativity – Why high school students should learn about Einstein’s most revolutionary idea. Titan.uio.no.
  • Bøe, Maria Vetleseter (2018). Science identity development within teaching and learning cultures in University STEM programs.
  • Kersting, Magdalena (2018). Modernising Physics Teaching.
  • Kersting, Magdalena (2018). General Relativity in Upper Secondary School.
  • Kersting, Magdalena & Steier, Rolf (2018). Gravity, imagination and embodied conceptions of spacetime.
  • Kersting, Magdalena (2018). Navigating Four Dimensions. Lateral Magazine.
  • Kersting, Magdalena (2018). General Relativity in Upper Secondary School: How Philosophy of Science Can Inform Physics Education of the 21st century.
  • Bungum, Berit & Henriksen, Ellen Karoline (2018). Light talking: Students' reflection on the wave-particle duality for light in small-group discussions.
  • Kersting, Magdalena (2018). The Role of Imagination in the Language Games of the Science Classroom.
  • Kersting, Magdalena (2018). Navigating four dimensions – upper secondary students’ understanding of movement in spacetime.
  • Kersting, Magdalena (2018). International perspectives on Einsteinian Physics at upper secondary school level.
  • Kersting, Magdalena (2018). How history and philosophy of science can inform teaching and learning of general relativity in upper secondary school.
  • Kersting, Magdalena (2018). How history and philosophy of science can inform teaching and learning of general relativity in upper secondary school.
  • Steier, Rolf & Kersting, Magdalena (2018). When a sandwich becomes the earth: imagination and creativity with improvised representations.
  • Kersting, Magdalena (2018). Generell relativitetsteori.
  • Angell, Carl & Tellefsen, Cathrine Wahlstrøm (2018). Relativt moderne fysikkundervisning - Kvantefysikk og generell relativitetsteori.
  • Angell, Carl (2018). Relekvant - Relativitetsteori og kvantefysikk i fysikk 2.
  • Frågåt, Thomas (2017). General Relativity for High School Students - A teachers’ professional development workshop introducing new materials and on-line tools for teaching Einstein’s general theory of relativity to high school students.
  • Frågåt, Thomas; Henriksen, Ellen Karoline & Tellefsen, Cathrine Wahlstrøm (2017). Who is the good physics teacher? – Views from a Norwegian perspective.
  • Bungum, Berit; Bøe, Maria Vetleseter & Henriksen, Ellen Karoline (2017). Kvantesnakk: Korleis kan diskusjonar i smågrupper støtte elevar si læring? Naturfag. ISSN 1504-4564. 2017(2), p. 50–53.
  • Frågåt, Thomas (2017). General Relativity for High School Students - A teachers’ professional development workshop introducing new materials and on-line tools for teaching Einstein’s general theory of relativity to high school students.
  • Kersting, Magdalena (2017). Teaching General Relativity in Upper Secondary Schools: an Educational Reconstruction.
  • Kersting, Magdalena; Zadnik, Marjan; Stannard, Warren; Moschilla, John & Blair, David (2017). An International Research Collaboration in the Teaching and Learning of Einsteinian Physics.
  • Kersting, Magdalena & Myhrehagen, Henning Vinjusveen (2017). A Relatively Modern Physics Lesson.
  • Bungum, Berit & Tellefsen, Cathrine Wahlstrøm (2017). Combining research with development in schools within a Design-Based Research framework.
  • Frågåt, Thomas (2017). Teaching of Einsteinian physics – Experiences from a Norwegian development and research project.
  • Tellefsen, Cathrine Wahlstrøm & Angell, Carl (2017). ReleKvant: Aktiv og variert læring i relativitetsteori og kvantefysikk.
  • Bungum, Berit; Bøe, Maria Vetleseter & Henriksen, Ellen Karoline (2017). Quantum talk: How student discussions may support learning in quantum physics.
  • Bøe, Maria Vetleseter (2017). Motivation and interest development in traditional physics classrooms in Norway.
  • Kersting, Magdalena & Steier, Rolf (2017). GRAVITY, IMAGINATION AND EMBODIED CONCEPTIONS OF SPACETIME.
  • Kersting, Magdalena; Henriksen, Ellen Karoline; Bøe, Maria Vetleseter & Angell, Carl (2017). Educational Reconstruction of General Relativity Through a Collaborative Online Learning Environment.
  • Frågåt, Thomas; Henriksen, Ellen Karoline & Tellefsen, Cathrine Wahlstrøm (2017). In-service physics teachers’ and pre-service science teachers’ view on professional competence.
  • Frågåt, Thomas (2017). Science student teachers’ and physics teachers’ views on professional knowledge.
  • Kersting, Magdalena; Frågåt, Thomas; Henriksen, Ellen Karoline & Tellefsen, Cathrine Wahlstrøm (2016). Introduction to ReleQuant: Developing online learning resources in modern physics.
  • Frågåt, Thomas (2016). Designing and implementing a web-based teacher guide in modern physics.
  • Steier, Rolf (2016). Designing learning spaces: moving between schools and museums.
  • Steier, Rolf (2016). Conceptual Understanding and Embodied Learning in General Relativity.
  • Steier, Rolf (2016). Imagining Space and Time: distributed imagination in upper secondary physics classrooms.
  • Angell, Carl; Bungum, Berit; Bøe, Maria Vetleseter & Henriksen, Ellen Karoline (2016). Relativitetsteori og kvantefysikk i vgs: Forskning og utvikling av et skoleprosjekt. Fra Fysikkens Verden. ISSN 0015-9247. p. 21–25.
  • Henriksen, Ellen Karoline (2016). Fra forskning til fysikkundervisning med ReleKvant: Nettbaserte læringsressurser i relativitetsteori og kvantefysikk, utviklet av forskere, lærere og lærerstudenter.
  • Angell, Carl; Bøe, Maria Vetleseter; Henriksen, Ellen Karoline; Tellefsen, Cathrine Wahlstrøm; Vistnes, Arnt Inge & Bungum, Berit [Show all 8 contributors for this article] (2016). Kvantefysikk.
  • Frågåt, Thomas (2016). Investigating physics teachers’ professional development when collaborating in a research project.
  • Tellefsen, Cathrine Wahlstrøm & Henriksen, Ellen Karoline (2016). For hver etasje du går oppover I en trapp, eldes du raskere. [Internet]. Titan (MN-fak. UiO - nettavis).
  • Henriksen, Ellen Karoline (2016). Pupils’ learning and understanding in quantum physics: the nature of light and the concept of quantization.
  • Henriksen, Ellen Karoline & Blair, David (2016). Einsteinian Physics; no longer optional.
  • Kersting, Magdalena (2016). Curved space and warped time: Students’ understanding of gravity.
  • Kersting, Magdalena (2016). General Relativity: Making Einstein’s Theory Teachable.
  • Blair, David; Henriksen, Ellen Karoline & Hendry, Martin (2016). Why don’t we teach Einstein’s theories in school? The Conversation. ISSN 2201-5639.
  • Tellefsen, Cathrine Wahlstrøm; Bøe, Maria Vetleseter & Henriksen, Ellen Karoline (2016). Modern physics on the curriculum: Challenges to Teachers and students.
  • Henriksen, Ellen Karoline; Angell, Carl; Bungum, Berit; Bøe, Maria Vetleseter; Tellefsen, Cathrine Wahlstrøm & Frågåt, Thomas [Show all 7 contributors for this article] (2016). ReleKvant - undervisningsopplegg om relativitetsteori og kvantefysikk.
  • Henriksen, Ellen Karoline; Angell, Carl; Bungum, Berit & Bøe, Maria Vetleseter (2016). Från forskning till fysikundervisning med ReleKvant: Nätbaserade lärresurser i relativitetsteori och kvantfysik, utvecklade av forskare, lärare och lärarstudenter. Naturvetenskapens och teknikens didaktik. 1(1), p. 53–64.
  • Frågåt, Thomas; Henriksen, Ellen Karoline & Tellefsen, Cathrine Wahlstrøm (2016). Pre-service science teachers’ views on professional knowledge.
  • Bungum, Berit; Henriksen, Ellen Karoline; Frågåt, Thomas & Kersting, Magdalena (2016). ReleKvant - læring og undervisning i kvantefysikk og relativitetsteori.
  • Henriksen, Ellen Karoline; Bungum, Berit; Angell, Carl; Bøe, Maria Vetleseter; Frågåt, Thomas & Sørborg, Øystein (2016). ReleKvant: Læringsressurser i moderne fysikk på viten.no Lansering av Viten-programmet "Kvantefysikk".
  • Angell, Carl; Bøe, Maria Vetleseter & Henriksen, Ellen Karoline (2015). Kva er lys, eigentleg? Kva seier naturvitskapen, og kva tenkjer elevane? Naturfag. ISSN 1504-4564. p. 10–13.
  • Bungum, Berit & Tellefsen, Cathrine Wahlstrøm (2015). Bruk av språk og diskusjoner for å fremme elevers forståelse i moderne fysikk.
  • Bøe, Maria Vetleseter; Angell, Carl; Bungum, Berit & Henriksen, Ellen Karoline (2015). Entanglement: Quantum physics, history, philosophy and NoS in traditional Norwegian classrooms.
  • Henriksen, Ellen Karoline & Villanger-Larsen, Elisabeth (2015). ReleKvant fysikkundervisning: Skreddersydde læringsressurser i fysikk, utviklet av forskere, lærere og lektorstudenter.
  • Bungum, Berit; Angell, Carl; Tellefsen, Cathrine Wahlstrøm & Henriksen, Ellen Karoline (2015). Physics students’ understanding of fundamental principles in quantum physics.
  • Tellefsen, Cathrine Wahlstrøm (2014). Prosjekt ReleKvant. Undervisningsstrategier og elevers begrepsutvikling i moderne fysikk.
  • Tellefsen, Cathrine Wahlstrøm; Henriksen, Ellen Karoline & Angell, Carl (2014). ReleKvant – moderne fysikk i klasserommet.
  • Henriksen, Ellen Karoline; Angell, Carl; Bungum, Berit; Bøe, Maria Vetleseter; Tellefsen, Cathrine Wahlstrøm & Frågåt, Thomas (2014). ReleKvant – undervisningsopplegg om relativitetsteori og kvantefysikk.

View all works in Cristin

Tags: Physics education, general relativity, quantum physics, physics teacher education
Published Jan. 4, 2016 11:26 AM - Last modified Oct. 25, 2022 8:37 AM