English version of this page

Magnetotellurisk Analyse for Grønland og Postglasial Isostatisk Evolusjon (MAGPIE)

Prosjektet MAGPIE er et internasjonalt og tverrfaglig forskningssamarbeid med mål om å forbedre estimatene for postglasiale landhevningsprosesser (PGL) på Grønland. Dette vil videre bli brukt til å forbedre estimatene på hvor mye Grønlandsisen smelter. 

Bilde av logoen til MAGPIE

Smeltingen av Grønlandsisen har akselerert det siste tiåret som følge av et varmere klima. Dette anses som et stor bidrag til dagens globale havnivåstigning, og er dermed en alvorlig trussel mot kystnære områder i fremtiden. Derfor er det viktig at man med høy nøyaktighet måler utbredelse og volum av ismassetap. Tap av is overvåkes ved å måle både tyngdekraft og høyde på isoverflate, som endres når isen smelter. Under Grønland beveger jorden seg når vekten av smeltet is fjernes, i en prosess kalt postglasial landhevning, forkortet PGL. Både tyngdekraft og høyde på isoverflate påvirkes PGL, og dermed også estimatene av ismassetap.

Panoramabilde av isbreen Russell vest på Grønland. Isbreen er en raskt flytende brearm fra Grønlandsisen. Foto: MAGPIE-teamet.
Panoramabilde av den hurtige brearmen Russell som ligger vest på Grønland. Foto: MAGPIE

Deformasjonen ved slike PGL prosesser kan være veldig langsomme, slik at Jorden fortsatt reagerer på avlastningen etter siste istid, som endte for flere tusen år siden. Raten av PGL er avhengig av hvordan mantelbergartene i området flyter – deres viskositet. Viskositeten under Grønland er ukjent, og er sannsynligvis kompleks, som videre fører til usikkerhet i massetap estimat. 

Mål

MAGPIE søker å forbedre estimater for ismasstap fra Innlandsisen på Grønland ved å gjennomføre følgende:

  • den første magnetotelluriske (MT) undersøkelsen av is på Grønland,
  • beregne lateral variasjoner i viskositet i mantelen under Grønland ved bruk av MT data,
  • utvikle 3D numeriske modeller av postglasial landhevning for Grønland som inkluderer laterale variasjoner i viskositet i mantelen,
  • fjerne deformasjon forårsaket av postglasial landhevning fra geodetiske observasjoner for å forbedre dagens estimater av ismasse på Grønland.

Resultater

Prosjektets mål er å frembringe nye mer presise estimater på mantelens viskositet under Grønland ved å samle geofysiske data fra innlandsisen på Grønlands. De magnetotelluriske (MT) dataene viser Jordens elektriske ledningsevne, som er følsom for temperatur og vanninnhold, som igjen styrer viskositeten i mantelen. Dermed kan vi bruke MT-dataene til å kartlegge variasjoner i viskositet under Grønland. Datamålingene er også følsomme for subglasial smeltevann som gjør oss i stand til å oppdage ekstra varmefluks som følge av Iceland-Plume passasjen.

I tillegg vil vi utvikle en ny teknikk for å numerisk modellere PGL, som tar hensyn til store variasjoner i viskositet. Koden vil være nyttig for å studere PGL-problemer over hele verden, men vi vil bruke den til å predikere PGL knyttet til variasjoner i viskositet under Grønland. Videre vil vi bruke de nye forbedrede PGL-modellene til å produsere mer nøyaktige estimater for dagens istap fra Grønland.

Mer om vår forskning

Følg vår blogg for MAGPIE: magpiegreenland.wordpress.com

Finansiering

Engelsk tittel på prosjektet er: Magnetotelluric Analysis for Greenland and Postglacial Isostatic Evolution (MAGPIE). Prosjektet er finansiert av Norges forskningsråd gjennom FRINATEK-programmet, med NFR prosjektnummer 288449. 

Varigheten for MAGPIE-prosjektet er fra 2019, med avslutning i 2023.

Samarbeid

Prosjektet er et samarbeid mellom forskere fra ulike institutter:

Publikasjoner

  • Heyn, Björn Holger & Conrad, Clinton Phillips (2022). On the Relation Between Basal Erosion of the Lithosphere and Surface Heat Flux for Continental Plume Tracks . Geophysical Research Letters. ISSN 0094-8276. 49(7). doi: 10.1029/2022GL098003. Fulltekst i vitenarkiv
  • Sames, Benjamin; Wagreich, Michael; Conrad, Clinton Phillips & Iqbal, S. (2020). Aquifer-eustasy as the main driver of short-term sea-level fluctuations during Cretaceous hothouse climate phases. Geological Society Special Publication. ISSN 0305-8719. 498, s. 9–38. doi: 10.1144/SP498-2019-105. Fulltekst i vitenarkiv
  • Smith-Johnsen, Silje; de Fleurian, Basile; Schlegel, Nicole; Seroussi, Hélène & Nisancioglu, Kerim Hestnes (2020). Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream. The Cryosphere. ISSN 1994-0416. 14, s. 841–854. doi: 10.5194/tc-14-841-2020.
  • Hartmann, Robert; Ebbing, Jörg & Conrad, Clinton Phillips (2020). A Multiple 1D Earth Approach (M1DEA) to account for lateral viscosity variations in solutions of the sea level equation: An application for glacial isostatic adjustment by Antarctic deglaciation. Journal of Geodynamics. ISSN 0264-3707. 135. doi: 10.1016/j.jog.2020.101695. Fulltekst i vitenarkiv

Se alle arbeider i Cristin

  • Heyn, Björn Holger & Conrad, Clinton Phillips (2021). Plume-induced heat flux anomalies and the associated thinning of the continental lithosphere.
  • Weerdesteijn, Maaike Francine Maria; Conrad, Clinton Phillips; Reusen, J.M.; Steffen, R. & Naliboff, J. (2021). Solid earth uplift due to contemporary ice melting above low-viscosity regions of Greenland’s upper mantle.
  • Weerdesteijn, Maaike Francine Maria; Conrad, Clinton Phillips; Hollyday, A.; Austermann, J. & Gassmöller, R. (2021). Extending the open-source code ASPECT to solve the sea level equation on a heterogeneous Earth.
  • Conrad, Clinton Phillips (2021). Earth’s History of Changing Sea Level: Billions of Years to Decades .
  • Conrad, Clinton Phillips (2021). Tectonic Reconstructions of Past Sea Level, Dynamic Topography and the Deep Water Cycle .
  • Conrad, Clinton Phillips (2021). Global Mantle Flow Patterns and the Time Dependence Dynamic Topography at Earth’s Surface and CMB.
  • Conrad, Clinton Phillips (2021). Sea Level and the Solid Earth.
  • Weerdesteijn, Maaike Francine Maria; Conrad, Clinton Phillips; Selway, Kate; Naliboff, John & Gassmöller, Rene (2020). Developing a 3D glacial isostatic adjustment modeling code using ASPECT.
  • Conrad, Clinton Phillips; Selway, Kate; Weerdesteijn, Maaike Francine Maria; Smith-Johnsen, Silje; Nisancioglu, Kerim Hestnes & Karlsson, Nanna B (2020). Magnetotelluric Constraints on Upper Mantle Viscosity Structure and Basal Melt Beneath the Greenland Ice Sheet.
  • Weerdesteijn, Maaike Francine Maria; Conrad, Clinton Phillips; Selway, Kate & Ramirez, Florence (2020). Magnetotelluric Analysis for Greenland and Postglacial Isostatic Evolution (MAGPIE).
  • Weerdesteijn, Maaike Francine Maria; Conrad, Clinton Phillips; Naliboff, John & Selway, Kate (2020). Developing an open-source 3D glacial isostatic adjustment modeling code using ASPECT.
  • Selway, Kate; Conrad, Clinton Phillips; Ramirez, Florence & Weerdesteijn, Maaike Francine Maria (2020). How can geophysical imaging help constrain mantle viscosity to improve glacial isostatic adjustment models?
  • Selway, Kate; Conrad, Clinton Phillips; Ramirez, Florence; Karlsson, Nanna B; Weerdesteijn, Maaike Francine Maria & Heyn, Björn Holger (2020). How magnetotellurics can aid cryosphere studies: mantle rheology, GIA, surface heat flow, and basal melting.
  • Gaina, Carmen; Barletta, V.; Conrad, Clinton Phillips; Ebbing, Jörg; Forsberg, R. & Ferraccioli, Fausto [Vis alle 9 forfattere av denne artikkelen] (2020). Interplay of cryosphere, solid earth and dynamic mantle in the Arctic.
  • Heyn, Björn Holger; Conrad, Clinton Phillips & Selway, Kate (2020). Numerical constraints on heat flux variations and lithospheric thinning associated with passage of the Iceland plume beneath Greenland.
  • Ramirez, Florence; Selway, Kate & Conrad, Clinton Phillips (2020). Integrating magnetotelluric and seismic geophysical observations to improve upper mantle viscosity estimates beneath polar regions.
  • Weerdesteijn, Maaike Francine Maria; Conrad, Clinton Phillips; Gassmöller, Rene; Naliboff, John & Selway, Kate (2020). An Open-source 3D Glacial Isostatic Adjustment Modeling Code using ASPECT.
  • Ramirez, Florence; Selway, Kate & Conrad, Clinton Phillips (2020). Relationship between magnetotelluric and seismic geophysical observations and mantle viscosity.
  • Hartmann, Robert; Ebbing, Jörg & Conrad, Clinton Phillips (2020). A Multiple 1D Earth Approach (M1DEA) to account for lateral viscosity variations in solutions of the sea level equation: An application for glacial isostatic adjustment by Antarctic deglaciation.
  • Conrad, Clinton Phillips; Selway, Kate; Weerdesteijn, Maaike Francine Maria; Smith-Johnsen, Silje; Nisancioglu, Kerim Hestnes & Karlsson, Nanna B (2020). Magnetotelluric Constraints on Upper Mantle Viscosity Structure and Basal Melt Beneath the Greenland Ice Sheet.
  • Conrad, Clinton Phillips (2020). Earth's History of Changing Sea Level.
  • Ramirez, Florence; Selway, Kate & Conrad, Clinton Phillips (2020). Using magnetotelluric and seismic geophysical observations to infer viscosity for Glacial Isostatic Adjustment calculations.
  • Conrad, Clinton Phillips (2020). Sea Level and the Solid Earth, Interacting Across Timescales.
  • Weerdesteijn, Maaike Francine Maria; Conrad, Clinton Phillips & Selway, Kate (2020). Developing an open-source 3D glacial isostatic adjustment modeling code using ASPECT.
  • Conrad, Clinton Phillips (2020). Slowdown in plate tectonics may have led to Earth’s ice sheets. [Tidsskrift]. Science.
  • Conrad, Clinton Phillips (2020). Forsker på geodynamikk – Clint Conrad har fått Evgueni Burov Medal. [Internett]. Titan.
  • Conrad, Clinton Phillips (2020). Pris til UiO-professor . [Internett]. geoforskning.no.
  • Conrad, Clinton Phillips (2020). Korona­krisen vinge­klippet UiO-forskere. [Avis]. Universitas.
  • Hartmann, Robert; Ebbing, Jörg & Conrad, Clinton Phillips (2020). RFBupdate_for_SELEN.
  • Conrad, Clinton Phillips (2019). Arctic Deglaciation and its Connection to the Deep Earth.
  • Weerdesteijn, Maaike; Conrad, Clinton Phillips; Selway, Kate & Ramirez, Florence (2019). MAGPIE: Magnetotelluric Analysis for Greenland and Postglacial Isostatic Evolution.
  • Conrad, Clinton Phillips; Selway, Kate; Weerdesteijn, Maaike & Smith-Johnsen, Silje (2019). Magnetotelluric Analysis for Greenland and Postglacial Isostatic Evolution (MAGPIE).
  • Conrad, Clinton Phillips; Selway, Kate; Weerdesteijn, Maaike; Smith-Johnsen, Silje; Nisancioglu, Kerim Hestnes & Karlsson, Nanna B (2019). Magnetotelluric constraints on upper mantle viscosity structure and basal melt beneath the Greenland ice sheet.
  • Nisancioglu, Kerim Hestnes (2019). Greenland and Nordic Seas/Arctic Variability.
  • Selway, Kate; Conrad, Clinton Phillips; Nisancioglu, Kerim Hestnes; Karlsson, Nanna B & Steinberger, Bernhard (2019). The MAGPIE Project: Magnetotelluric Analysis of Greenland and Postglacial Isostatic Evolution .
  • Hopper, John R.; Fatah, Rader Abdul; Gaina, Carmen; Geissler, Wolfram H; Funck, Thomas & Kimbell, Geoffrey S [Vis alle 7 forfattere av denne artikkelen] (2019). Sediment thickness, crustal thickness, and residual topography of the North Atlantic: estimating dynamic topography around Iceland.
  • Conrad, Clinton Phillips (2019). The MAGPIE Blog. [Internett]. https://magpiegreenland.wordpress.com/.
  • Weerdesteijn, Maaike Francine Maria; Conrad, Clinton Phillips; Selway, Kate & Ramirez, Florence (2019). Magnetotelluric Analysis for Greenland and Postglacial Isostatic Evolution (MAGPIE).
  • Weerdesteijn, Maaike Francine Maria; Conrad, Clinton Phillips; Selway, Kate & Ramirez, Florence (2019). Magnetotelluric Analysis for Greenland and Postglacial Isostatic Evolution (MAGPIE).
  • Weerdesteijn, Maaike Francine Maria; Conrad, Clinton Phillips; Selway, Kate & Ramirez, Florence (2019). Magnetotelluric Analysis for Greenland and Postglacial Isostatic Evolution (MAGPIE).
  • Conrad, Clinton Phillips (2019). Sea level and the Solid Earth.
  • Weerdesteijn, Maaike; Selway, Kate & Conrad, Clinton Phillips (2019). Magnetotelluric Analysis for Greenland and Postglacial Isostatic Evolution (MAGPIE).
  • Conrad, Clinton Phillips; Selway, Kate; Weerdesteijn, Maaike Francine Maria; Smith-Johnsen, Silje; Nisancioglu, Kerim Hestnes & Karlsson, Nanna B (2019). Magnetotelluric Constraints on Upper Mantle Viscosity Structure and Basal Melt Beneath the Greenland Ice Sheet.

Se alle arbeider i Cristin

Publisert 24. juni 2019 09:31 - Sist endret 21. feb. 2022 12:45